置换的奇偶性

(重定向自偶置换

数学中,当X是一个至少有两个元素的有限集合时,X置换(即从XX双射)可分为大小相同的两类:奇置换偶置换。如果X固定了任何一个全序X的一个置换的奇偶性可以定义为中反向对个数的奇偶性。所谓反向对即X中二元组使得。这里为置换中第位的元素。

Permutations of 4 elements

Odd permutations have a green or orange background. The numbers in the right column are the inversion numbers (OEIS數列A034968), which have the same parity as the permutation.

一个置换符号sign或signature)记作sgn(σ):如果是偶数则定义为 +1,如果是奇数则定义为 -1。符号定义了对称群Sn交错特征。置换的符号另一个更一般的符号为列维-奇维塔符号),定义在XX的所有映射上,而在非双射映射上取值为0。

置换的符号可以清晰地表达为

这里中反向对的个数。或者,置换的符号也可通过对换分解定义为

这里m是分解中对换的个数。尽管这样一个分解不是惟一的,所有分解中对换个数的奇偶性是相同的,蕴含着置换的符号是良定义的。

例子

考虑集合{1,2,3,4,5}的置换σ,它将初始排列12345变为34521。可以通过三个对换得到:首先交换1和3的位置,然后交换2和4,最后交换1和5。这证明了给定的置换σ是奇的。利用置换一文中的记号,我们可写成  

有无穷种方式将σ写成换位的复合,例如

 

但是不可能将其写为偶数个换位的复合。

性质

恒同置换是偶置换。一个偶置换可以由恒同置换通过偶数次两个元素互换(称为对换)得到,而一个奇置换可由奇数次对换得到。

由整数加法相应的法则马上得到下列性质:

  • 两个偶置换的复合是偶的
  • 两个奇置换的复合是偶的
  • 一个奇置换与偶置换的复合是奇的

由此得到

  • 任何偶置换的逆是偶的
  • 任何奇置换的逆是奇的

考虑集合{1,...,n}的所有置换之对称群Sn,我们可总结为映射

 

将每个置换映为其符号是一个群同态

进一步,我们见到偶置换组成Sn的一个子群。这就是n个字母上的交错群,记作An。它是符号同态的。奇置换不能组成一个子群,因为两个奇置换的复合是偶置换,但它们是An(在Sn中)的一个陪集

如果n>1,则Sn中偶置换与奇置换一样多;从而An包含n!/2个置换。(原因:如果σ是偶的,则 (12)σ是奇的;如果σ是奇的,则 (12)σ是偶的;这两个映射互逆。)

一个轮换是偶的当且仅当它的长度是奇的。这得自如下类似公式

(a b c d e) = (a e) (b e) (c e) (d e)

特别地,为了确定给定的置换是偶的还是奇的,将它写成不交轮换的乘积。这个置换是奇的当且仅当这个分解包含奇数个偶长度的轮换。

每个奇数置换必须是偶的;反之一般不成立。

两个定义的等价性

证明一

任意置换可以由一列对换产生:对第一个对换我们将置换的第一个元素放到它恰当的位置,第二个对换放第二个元素,等等。给定一个置换σ,我们可用无数种方式将其写成对换之积。我们要证明所有这样一个分解,要么都有偶数个对换,要么有奇数个对换。

假设我们有两个这样的分解:

σ = T'1 T'2 ... T'k'
σ = Q'1 Q'2 ... Q'm'

我们要证明k'与m'要么都是偶的,要么都是奇的。

每个对换可以写成奇数个相邻元素的对换之乘积,例如

(2 5) = (2 3)(3 4)(4 5)(4 3)(3 2)

如果我们将上面的T'1...T'k'与Q'1...Q'm'中每个对换作这样的分解,我们得到一个新的分解:

σ = T1 T2 ... Tk
σ = Q1 Q2 ... Qm

这里所有T1...Tk Q1...Qk是相邻对换,k − k'是偶数,m − m'是偶数。

现在将T1的逆与σ复合。T1是两个相邻数 (i, i + 1)的对换,所以与σ相比,新置换σ(i, i + 1)恰好少一个(若 (i,i + 1)是σ的反向对)或多一个反向对(若 (i,i + 1)不是σ的反向对)。然后以相同的方法应用到T2, T3, ... Tk的逆,“消解”了置换σ。最后我们得到了恒同置换,它的N是零,这意味着首先的N(σ)减去k是偶数。

对另一个置换Q1...Qm我们对同样的事情,从而首先的N(σ)减去m是偶数

这样m − k是偶数,这就是我们要证明的。

现在我们可以定义置换σ是偶的,如果N(σ)是偶数;是奇的,如果N(σ)是奇数。这与首先给出的定义相同,但现在清晰地看到每个置换不是偶的就是奇的。

证明二

另一个证明利用多项式

 

例如在n = 3的情形,我们有

 

现在对{1,...,n}的一个给定置换σ,我们定义

 

因为多项式  除了符号之外它们的因子相同,从而sgn(σ)不是 +1就是−1。从而如果σ与τ是两个置换,我们有

 
 
 

有此定义之后,显然任何两个相邻元素的对换有符号−1,这样我们事实上重新得到了早先定义的符号。

证明三

第三个证明利用群Sn一个呈示,使用生成元为 ,关系为

  •   对所有i
  •    对所有i < n − 1,
  •    如果 |i − j| ≥ 2。

这里生成元 表示对换 (i, i + 1)。所有的关系将一个词的长度保持或改变2。从一个偶数长词开始使用这些关系后总得到偶数长词,对奇数长词也类似。从而可以毫无歧义地称Sn中由偶数长词表示的元素是偶的,由奇数长词表示的元素是奇的。

相关条目