数列

數字組成的序列

数列(英語:Number sequence)是由数字組成的序列。另一種略為抽象的說法是——以正整數為定義域、值域是一個數系函数级数也是一種数列,不過它的每一項是另外一個數列的部份和。在微積分的教材中經常討論的数列是實數序列和實數級數。一般的「序列」则范围更广,可以由有序的一系列数字、一系列函数、一系列向量、一系列矩阵或一系列张量等等所组成。而在計算理論中,数列以及相关术语常用于有关递推规律的研究。

正式定義

由於最一般的數為複數,可以作如下的定義:[1]

數列的定義 — 一個   的函數被稱為無窮數列,可記為     ,而   會被簡記為  

  ,則一個   的函數被稱為有限數列,可記為    

在教學上常會如下標示有限數列,來增進對定義的直觀理解:

 

以上表達式中的每一个数被称为这个数列的「项」。  为数列的「第一项」、  为「第二项」,以此類推。  被稱為有限數列的項數。數列中的第一项常稱為「首項」,最后一项則称为「末项」。注意有限數列也可以設為   ,換句話說,把   加入數列的定義域,並以第零項   作為首項。無窮數列只有首項,沒有末項,但類似的,也有人把   踢出無窮數列的定義域,讓無窮數列的首項為  

由數列中各個項的組成的數列稱為「級數」,換句話說

級數的定義 — 一個數列  級數是另外一個數列   ,具有以下特性:

  •  
  • 對所有的   

一般會將   寫為   ,甚至更直觀的   來凸顯級數源於求和」的直觀概念。

級數的概念可以推廣至數列以外的序列,比如說函數序列的函数級數英语function series

分類

單調性

  • 若對所有 nZ+an+1an ,则称数列 ak 为「递增数列」。把 換成 > ,則稱為「嚴格遞增數列」。
  • 若對所有 nZ+an+1an ,则称数列 ak 为「递减数列」。把 換成 < ,則稱為「嚴格遞减數列」。
  • 若對所有 nZ+an+1 = an ,则称数列 ak 为「常数数列」。

有限性

  • 若數列   的项数有限,則 ak 为「有限数列」。
  • 若數列   的项数无限,則 ak 为「无穷数列」。

有界性

  • 若對所有 nZ+ManN ,则称数列 ak 为「有界数列」。 M 稱為「下界」, N 稱為「上界」。
  • 若對數列 ak ,上述的 MN 不存在,则称数列 ak 为「無界数列」。

收斂性與極限

收斂性是數列的一個重要性質。如果一個數列逐漸趨近於某一個值,就稱該數列為收斂數列,否則稱為發散數列

簡單的說,一個數列 有極限,便是它的數列中的元素逐漸地越來越靠近 (稱為極限值),但是它們仍然任意得很靠近極限值 ,而不一定恰好相等。

舉例來說:當   時,隨著n的數字增加,可以看到它逐漸趨向於0。當  時,隨著n的數字增加,可以看到它逐漸趨向於2。

此外,值得注意的是,當一個數列有極限值時,它的極限值一定是唯一的。一般來說,當數列收斂,我們會記 

收斂的嚴格定義

我們說一個實數數列 收斂於實數 ;如果對任意的  ,存在一個正整數 ,使得對所有的 ,有 

重要的特殊数列

  • 等差数列:是一种特殊数列。数列中,从第二项起,每一项与前一项的差相等。
例如数列 
这就是一个等差数列,因为第二项与第一项的差和第三项与第二项的差相等,都等于   的差也等于2。我们把像2这样的后一项与前一项的差称之为公差,符号为 ,但是 可为0。
若設首項 ,則等差數列的通項公式為 
  • 多阶等差数列:又称高阶等差数列,中國则称之为“质数相关数列”。
把一个数列的所有后项与前一项之差组成一个新的数列,如果这个新的数列是普通等差数列,原数列就称为二阶等差数列。
由此类推,把一个数列的所有后项与前一项之差组成一个新的数列,再把这个新的数列的所有后项与前一项之差组成另一个新的数列,如此进行下去,直到最后的数列如果是普通等差数列,那么原数列就是多阶等差数列。
普通等差数列可以视为一阶等差数列,因而常数数列实际就是零阶等差数列。
  • 等比数列:是一种特殊数列。它的特点是:从第2项起,每一项与前一项的比都是一个常数。
例如数列 
这就是一个等比数列,因为第二项与第一项的比和第三项与第二项的比相等,都等于2,  的比也等于2。我们把像2这样的后一项与前一项的比称之为公比,符号为 
若設首項 ,則等比數列的通項公式為 
  • 斐波那契数列:是一种特殊数列。它的特点是:首兩項均是1,从第3项起,每一项均為前兩項的和。
以數學符號表示,即 ,且對於  
斐波那契数列的通项公式為 
  • 質數數列:目前找不到規律的特殊數列,即:2, 3, 5, 7, 11, 13, 17,…………
  • 正负相间:  
  • 隔项有零:  

数列的求和

通常对第1项到第 项求和,记为 。此求和符号是由瑞士数学家莱昂哈德·欧拉使用和推广的。

一个特殊数列求和:奇数数列。1,3,5,7,9,...。其和为项数 的平方。例如:1+3=22,1+3+5=32

通项公式的求解

通常,从实际问题中会先得到一个递推关系式,但是可能会难以观察出数列中某一项的项数和具体大小之间的规律。所以需要求出这个数列的通项公式。以下是一些常见的递推式化简方法。通项公式的求解在积分学线性代数概率论组合数学趣味数学数学物理数学建模数值分析分形等领域中都会遇到。并不存在一种通用的解法。求不出通项公式或只能进行估算的情形也可能出现。

数学归纳法

求出该数列的前数项,归纳其通项公式,然后用数学归纳法证明公式正确。

数学归纳法是最基本的方法,但对观察和归纳的能力要求比较高。如果猜不出规律,则不能使用此方法。

逐差全加

给定数列差 时逐差全加,例如:

  , 求 
 

逐商全乘

给定数列比 时逐差全乘,例如:

  ,求 
 

从和式求通项

如果已知数列和的公式,那么通项的求解非常容易。由 可知 

 看成一个数列,可以先对 进行求解,然后得出 

换元法

换元法用于从形式上简化表达式,以突出问题的本质。换元法一般不单独使用,而是和其它方法结合使用。中学数学中常用的有对数换元法、三角函数换元法,还有用得很少的双曲函数换元法。

不动点法

对于形如齐次分式的递推关系,可利用不动点来推导。

已知 ,其中   都是常数,求 
求这类数列的通项公式,一般的方法就是将之化成一个新的等比数列

  • 如果 ,那么这个式子就可以化成下面的形式:

 
求出 ,那么数列 就是一个等比数列,从而求出通项公式。

  • 如果 ,这个递推关系就不能化为等比数列。如果 ,那么它就是等差数列。另外,当 的时候,它是一个等和数列。从这个问题我们可以看到,等和数列也可以化成一个等比数列。
  • 除此之外也可以这样将之化成等比数列:

 
 
两边相减就有: ,如此就化成了一个等比数列。

已知 ,其中    都为常数,求 
与上述数列一样,它们一定可以化成下面的形式:
 
求出对应系数,于是就转化成了前面那种形式,然后就可以求出数列 的通项公式,然后求出 的通项公式。实际上这是一种逐步化简的方法。

其它方法

其它常用方法包括导数求通项法、组合数学中的母函数方法、特征方程法,这些一般是在大学课程或是部分高中的进阶课程中学到。其中特征方程法专门用于线性递推关系式的化简,与求解线性微分方程的特征方程法非常类似。

在其他數學領域的使用

拓樸

分析

線性代數

抽象代數

参见

参考资料

  1. ^ 谭杰锋; 郑爱武. 高等数学. 清华大学出版社; 北京交通大學出版社. 2007. ISBN 978-7-8108-2647-1 (中文(中国大陆)).