原始文件 (1,024 × 1,024像素,文件大小:5 KB,MIME类型:image/png


摘要

描述
English: This tartan-like graph shows the Ising model probability density for the two-sided lattice using the dyadic mapping.

That is, a lattice configuration of length

is understood to consist of a sequence of "spins" . This sequence may be represented by two real numbers with

and

The energy of a given configuration is computed using the classical Hamiltonian,

Here, is the shift operator, acting on the lattice by shifting all spins over by one position:

The interaction potential is given by the Ising model interaction

Here, the constant is the interaction strength between two neighboring spins and , while the constant may be interpreted as the strength of the interaction between the magnetic field and the magnetic moment of the spin.

The set of all possible configurations form a canonical ensemble, with each different configuration occurring with a probability given by the Boltzmann distribution

where is Boltzmann's constant, is the temperature, and is the partition function. The partition function is defined to be such that the sum over all probabilities adds up to one; that is, so that

Image details

The image here shows for the Ising model, with , and temperature . The lattice is finite sized, with , so that all lattice configurations are represented, each configuration denoted by one pixel. The color choices here are such that black represents values where are zero, blue are small values, with yellow and red being progressively larger values.

As an invariant measure

This fractal tartan is invariant under the Baker's map. The shift operator on the lattice has an action on the unit square with the following representation:

This map (up to a reflection/rotation around the 45-degree axis) is essentially the Baker's map or equivalently the Horseshoe map. As the article on the Horseshoe map explains, the invariant sets have such a tartan pattern (an appropriately deformed Sierpinski carpet). In this case, the invariance arises from the translation invariance of the Gibbs states of the Ising model: that is, the energy associated with the state is invariant under the action of :

for all integers . Similarly, the probability density is invariant as well:

The naive classical treatment given here suffers from conceptual difficulties in the limit. These problems can be remedied by using a more appropriate topology on the set of states that make up the configuration space. This topology is the cylinder set topology, and using it allows one to construct a sigma algebra and thus a measure on the set of states. With this topology, the probability density can be understood to be a translation-invariant measure on the topology. Indeed, there is a certain sense in which the seemingly fractal patterns generated by the iterated Baker's map or horseshoe map can be understood with a conventional and well-behaved topology on a lattice model.

Created by Linas Vepstas User:Linas on 24 September 2006
日期 2006年9月24日 (原始上传日期)
来源
作者 英语维基百科Linas

许可协议

Linas 位于英语维基百科,本作品著作权人,特此采用以下许可协议发表本作品:
w:zh:知识共享
署名 相同方式共享
本文件采用知识共享署名-相同方式共享 3.0 未本地化版本许可协议授权。 受免責聲明的約束。
署名: Linas 位于英语维基百科
您可以自由地:
  • 共享 – 复制、发行并传播本作品
  • 修改 – 改编作品
惟须遵守下列条件:
  • 署名 – 您必须对作品进行署名,提供授权条款的链接,并说明是否对原始内容进行了更改。您可以用任何合理的方式来署名,但不得以任何方式表明许可人认可您或您的使用。
  • 相同方式共享 – 如果您再混合、转换或者基于本作品进行创作,您必须以与原先许可协议相同或相兼容的许可协议分发您贡献的作品。
本许可协议标签作为GFDL许可协议更新的组成部分被添加至本文件。
GNU head 已授权您依据自由软件基金会发行的无固定段落及封面封底文字(Invariant Sections, Front-Cover Texts, and Back-Cover Texts)的GNU自由文件许可协议1.2版或任意后续版本的条款,复制、传播和/或修改本文件。该协议的副本请见“GNU Free Documentation License”。 受免責聲明的約束。

原始上传日志

本檔案是由Liftarn使用CommonsHelper,從en.wikipedia轉移到維基共享資源。

原始描述頁面位於這裡。下列使用者名稱均來自en.wikipedia。
  • 2006-09-24 16:14 Linas 1024×1024× (5013 bytes) Created by Linas Vepstas [[User:Linas]] on 24 September 2006

说明

添加一行文字以描述该文件所表现的内容

此文件中描述的项目

描繪內容

文件历史

点击某个日期/时间查看对应时刻的文件。

日期/时间缩⁠略⁠图大小用户备注
当前2012年8月28日 (二) 09:262012年8月28日 (二) 09:26版本的缩略图1,024 × 1,024(5 KB)File Upload Bot (Magnus Manske)Transfered from en.wikipedia by User:liftarn using CommonsHelper

以下页面使用本文件:

全域文件用途

以下其他wiki使用此文件: