硫氰酸亚铜

化合物

硫氰酸亚铜是一种配位聚合物,化学式为CuSCN。它在空气中稳定。

硫氰酸亚铜
英文名 Copper(I) thiocyanate
Cuprous thiocyanate
别名 硫氰酸铜(I)
硫氰化亚铜
识别
CAS号 1111-67-7  checkY
PubChem 11029823
ChemSpider 55204
性质
化学式 CuSCN
摩尔质量 121.629 [1] g·mol⁻¹
外观 白色或黄色无定形粉末[1]
密度 2.85 g/cm3[1]
熔点 1,084 °C(1,357 K)[2][1]
溶解性 8.427·10−7 g/L (20 °C)
溶解性 溶于乙醚,不溶于酒精丙酮,稀酸[1]
磁化率 -48.0·10−6 cm3/mol
相关物质
其他阴离子 氰化亚铜
硒氰酸亚铜
其他阳离子 硫氰酸银
硫氰酸亚金
若非注明,所有数据均出自标准状态(25 ℃,100 kPa)下。

结构

硫氰酸亚铜的两种晶型已经得到了表征。右图表现出的是四面体配位结构的铜(I),SCN-配体的末端的硫是三桥接的。[3]

制备

硫氰酸亚铜由干燥的黑色的硫氰酸铜的自发分解生成,分解反应同时也会产生硫氰,加热有利于分解。在水中,硫氰酸铜的分解也会产生硫氰酸亚铜,同时生成硫氰酸和剧毒的氰化氢等物。[4] 它通常由Cu2+(如硫酸铜)在亚硫酸的存在下搅拌,缓慢滴加可溶性硫氰酸盐得到[5]),沉淀为白色固体。[6]还原剂也可替换为硫代硫酸盐

复盐

硫氰酸亚铜可以和碱金属元素形成复盐,如CsCu(SCN)2。这种复盐仅在浓CsSCN溶液中生成。在低浓度溶液中,复盐会解离出CuSCN沉淀。[7] 有K、Na和Ba的硫氰酸盐存在时,溶液通过浓缩结晶,混合物会析出,它们不是复盐。这只有对于CsCu(SNC)2可以通过浓缩溶液的方法得到。[8]

应用

硫氰酸亚铜是空穴导体,是宽带隙为3.6eV半导体,因此可以透过可见光近红外光[9]它被用于某些第三代电池中的光伏作为空穴传输层,显示出P型半导体和固态电解质的特性,常用于染料敏化的太阳能电池。然而,其空穴电导率相对较差(0.01S·m-1)。它可以通过多种处理方法改善,例如暴露于氯气中或用(SCN)2掺杂。[10]

掺有一氧化镍的硫氰酸亚铜在PVC中可以作为防烟添加剂协同使用。

沉淀在载体上的硫氰酸亚铜可用于将芳基卤化物转化为芳基硫氰酸酯的反应。[11]

硫氰酸亚铜可以用作防污涂料[12]。它与氧化亚铜相比,它是白色的,是更有效的杀菌剂。

参考文献

  1. ^ 1.0 1.1 1.2 1.3 1.4 CRC Handbook of Chemistry and Physics 97th Edition. 2016-06-24: 4–61. ISBN 1-4987-5428-7 (英语). 
  2. ^ Properties of Copper(I) thiocyanate. Chemspider. Alfa Aesar 40220. [2016-01-05]. (原始内容存档于2021-04-16). 
  3. ^ Smith, D. L.; Saunders, V. I. "Preparation and Structure Refinement of the 2H Polytype of beta-Copper(I) Thiocyanate" Acta Crystallographica B, 1982, volume 38, 907-909. doi:10.1107/S0567740882004361
  4. ^ David Tudela. The Reaction of Copper(II) with Thiocyanate Ions (Letter to the Editor). Journal of Chemical Education. 1993, 70 (2): 174. doi:10.1021/ed070p174.3. PDF copy页面存档备份,存于互联网档案馆
  5. ^ Matthew Dick. Use of cuprous thiocyanate as a short-term continuous marker for faeces. Gut. 1969, 10: 408–412 (408). doi:10.1136/gut.10.5.408. PDF copy页面存档备份,存于互联网档案馆
  6. ^ Reece H. Vallance, Douglas F. Twiss and Miss Annie R. Russell. J. Newton Friend , 编. A text-book of inorganic chemistry, volume VII, part II. Charles Griffin & Company Ltd. 1931: 282. 
  7. ^ H.L.Wells. On some double and triple thiocyanates. American Chemical Journal. 1902, 28: 245–284 (263). 
  8. ^ Herbert E. Williams. The chemistry of cyanogen compounds. J. & A. Churchill, London. 1915: 202–203. 
  9. ^ Wilde, G. Nanostructured Materials. Elsevier Science. 2009: 256 [2017-01-14]. ISBN 9780080914237. (原始内容存档于2017-01-16). 
  10. ^ Albini, A.; Fausto, R.; de Melo, J.S.S.; Maldotti, A.; Clementi, C.; Kalyanasundaram, K.; Johnston, L.J.; Harbron, E.; Misawa, H.; Romani, A. Photochemistry. Royal Society of Chemistry. 2011: 164 [2017-01-14]. ISBN 9781849731652. (原始内容存档于2017-01-16). 
  11. ^ Clark, J.H.; Kybett, A.P.; Macquarrie, D.J. Supported Reagents: Preparation, Analysis, and Applications. Wiley. 1992: 121 [2017-01-14]. ISBN 9780471187790. (原始内容存档于2017-01-16). 
  12. ^ V.F. Vetere et al, "Solubility and Toxic Effect of the Cuprous Thiocyanate Antifouling Pigment on Barnacle Larvae", Journal of Coatings Technology, 69:39 (1997-03) https://link.springer.com/article/10.1007/BF02696144页面存档备份,存于互联网档案馆