名稱
函式圖形
方程式
導數
區間
連續性 [1]
單調
一階導數單調
原點近似恆等
恆等函式
f
(
x
)
=
x
{\displaystyle f(x)=x}
f
′
(
x
)
=
1
{\displaystyle f'(x)=1}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
是
是
是
單位階躍函式
f
(
x
)
=
{
0
for
x
<
0
1
for
x
≥
0
{\displaystyle f(x)={\begin{cases}0&{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
f
′
(
x
)
=
{
0
for
x
≠
0
不 存 在
for
x
=
0
{\displaystyle f'(x)={\begin{cases}0&{\text{for }}x\neq 0\\{\text{不 存 在}}&{\text{for }}x=0\end{cases}}}
{
0
,
1
}
{\displaystyle \{0,1\}}
C
−
1
{\displaystyle C^{-1}}
是
否
否
邏輯函式 (S函式 的一種)
f
(
x
)
=
σ
(
x
)
=
1
1
+
e
−
x
{\displaystyle f(x)=\sigma (x)={\frac {1}{1+e^{-x}}}}
[2]
f
′
(
x
)
=
f
(
x
)
(
1
−
f
(
x
)
)
{\displaystyle f'(x)=f(x)(1-f(x))}
(
0
,
1
)
{\displaystyle (0,1)}
C
∞
{\displaystyle C^{\infty }}
是
否
否
雙曲正切函式
f
(
x
)
=
tanh
(
x
)
=
(
e
x
−
e
−
x
)
(
e
x
+
e
−
x
)
{\displaystyle f(x)=\tanh(x)={\frac {(e^{x}-e^{-x})}{(e^{x}+e^{-x})}}}
f
′
(
x
)
=
1
−
f
(
x
)
2
{\displaystyle f'(x)=1-f(x)^{2}}
(
−
1
,
1
)
{\displaystyle (-1,1)}
C
∞
{\displaystyle C^{\infty }}
是
否
是
反正切函式
f
(
x
)
=
tan
−
1
(
x
)
{\displaystyle f(x)=\tan ^{-1}(x)}
f
′
(
x
)
=
1
x
2
+
1
{\displaystyle f'(x)={\frac {1}{x^{2}+1}}}
(
−
π
2
,
π
2
)
{\displaystyle \left(-{\frac {\pi }{2}},{\frac {\pi }{2}}\right)}
C
∞
{\displaystyle C^{\infty }}
是
否
是
Softsign 函式[ 1] [ 2]
f
(
x
)
=
x
1
+
|
x
|
{\displaystyle f(x)={\frac {x}{1+|x|}}}
f
′
(
x
)
=
1
(
1
+
|
x
|
)
2
{\displaystyle f'(x)={\frac {1}{(1+|x|)^{2}}}}
(
−
1
,
1
)
{\displaystyle (-1,1)}
C
1
{\displaystyle C^{1}}
是
否
是
反平方根函式 (ISRU)[ 3]
f
(
x
)
=
x
1
+
α
x
2
{\displaystyle f(x)={\frac {x}{\sqrt {1+\alpha x^{2}}}}}
f
′
(
x
)
=
(
1
1
+
α
x
2
)
3
{\displaystyle f'(x)=\left({\frac {1}{\sqrt {1+\alpha x^{2}}}}\right)^{3}}
(
−
1
α
,
1
α
)
{\displaystyle \left(-{\frac {1}{\sqrt {\alpha }}},{\frac {1}{\sqrt {\alpha }}}\right)}
C
∞
{\displaystyle C^{\infty }}
是
否
是
線性整流函式 (ReLU)
f
(
x
)
=
{
0
for
x
<
0
x
for
x
≥
0
{\displaystyle f(x)={\begin{cases}0&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
f
′
(
x
)
=
{
0
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(x)={\begin{cases}0&{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
[
0
,
∞
)
{\displaystyle [0,\infty )}
C
0
{\displaystyle C^{0}}
是
是
否
帶洩露線性整流函式 (Leaky ReLU)
f
(
x
)
=
{
0.01
x
for
x
<
0
x
for
x
≥
0
{\displaystyle f(x)={\begin{cases}0.01x&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
f
′
(
x
)
=
{
0.01
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(x)={\begin{cases}0.01&{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
是
是
否
參數化線性整流函式 (PReLU)[ 4]
f
(
α
,
x
)
=
{
α
x
for
x
<
0
x
for
x
≥
0
{\displaystyle f(\alpha ,x)={\begin{cases}\alpha x&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
f
′
(
α
,
x
)
=
{
α
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(\alpha ,x)={\begin{cases}\alpha &{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
Yes iff
α
≥
0
{\displaystyle \alpha \geq 0}
是
Yes iff
α
=
1
{\displaystyle \alpha =1}
帶洩露隨機線性整流函式 (RReLU)[ 5]
f
(
α
,
x
)
=
{
α
x
for
x
<
0
x
for
x
≥
0
{\displaystyle f(\alpha ,x)={\begin{cases}\alpha x&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
[3]
f
′
(
α
,
x
)
=
{
α
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(\alpha ,x)={\begin{cases}\alpha &{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
是
是
否
指數線性函式 (ELU)[ 6]
f
(
α
,
x
)
=
{
α
(
e
x
−
1
)
for
x
<
0
x
for
x
≥
0
{\displaystyle f(\alpha ,x)={\begin{cases}\alpha (e^{x}-1)&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
f
′
(
α
,
x
)
=
{
f
(
α
,
x
)
+
α
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(\alpha ,x)={\begin{cases}f(\alpha ,x)+\alpha &{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
α
,
∞
)
{\displaystyle (-\alpha ,\infty )}
{
C
1
when
α
=
1
C
0
otherwise
{\displaystyle {\begin{cases}C_{1}&{\text{when }}\alpha =1\\C_{0}&{\text{otherwise }}\end{cases}}}
Yes iff
α
≥
0
{\displaystyle \alpha \geq 0}
Yes iff
0
≤
α
≤
1
{\displaystyle 0\leq \alpha \leq 1}
Yes iff
α
=
1
{\displaystyle \alpha =1}
擴展指數線性函式 (SELU)[ 7]
f
(
α
,
x
)
=
λ
{
α
(
e
x
−
1
)
for
x
<
0
x
for
x
≥
0
{\displaystyle f(\alpha ,x)=\lambda {\begin{cases}\alpha (e^{x}-1)&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
with
λ
=
1.0507
{\displaystyle \lambda =1.0507}
and
α
=
1.67326
{\displaystyle \alpha =1.67326}
f
′
(
α
,
x
)
=
λ
{
α
(
e
x
)
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(\alpha ,x)=\lambda {\begin{cases}\alpha (e^{x})&{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
λ
α
,
∞
)
{\displaystyle (-\lambda \alpha ,\infty )}
C
0
{\displaystyle C^{0}}
是
否
否
S 型線性整流激勵函數 (SReLU)[ 8]
f
t
l
,
a
l
,
t
r
,
a
r
(
x
)
=
{
t
l
+
a
l
(
x
−
t
l
)
for
x
≤
t
l
x
for
t
l
<
x
<
t
r
t
r
+
a
r
(
x
−
t
r
)
for
x
≥
t
r
{\displaystyle f_{t_{l},a_{l},t_{r},a_{r}}(x)={\begin{cases}t_{l}+a_{l}(x-t_{l})&{\text{for }}x\leq t_{l}\\x&{\text{for }}t_{l}<x<t_{r}\\t_{r}+a_{r}(x-t_{r})&{\text{for }}x\geq t_{r}\end{cases}}}
t
l
,
a
l
,
t
r
,
a
r
{\displaystyle t_{l},a_{l},t_{r},a_{r}}
are parameters.
f
t
l
,
a
l
,
t
r
,
a
r
′
(
x
)
=
{
a
l
for
x
≤
t
l
1
for
t
l
<
x
<
t
r
a
r
for
x
≥
t
r
{\displaystyle f'_{t_{l},a_{l},t_{r},a_{r}}(x)={\begin{cases}a_{l}&{\text{for }}x\leq t_{l}\\1&{\text{for }}t_{l}<x<t_{r}\\a_{r}&{\text{for }}x\geq t_{r}\end{cases}}}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
否
否
否
反平方根線性函式 (ISRLU)[ 3]
f
(
x
)
=
{
x
1
+
α
x
2
for
x
<
0
x
for
x
≥
0
{\displaystyle f(x)={\begin{cases}{\frac {x}{\sqrt {1+\alpha x^{2}}}}&{\text{for }}x<0\\x&{\text{for }}x\geq 0\end{cases}}}
f
′
(
x
)
=
{
(
1
1
+
α
x
2
)
3
for
x
<
0
1
for
x
≥
0
{\displaystyle f'(x)={\begin{cases}\left({\frac {1}{\sqrt {1+\alpha x^{2}}}}\right)^{3}&{\text{for }}x<0\\1&{\text{for }}x\geq 0\end{cases}}}
(
−
1
α
,
∞
)
{\displaystyle \left(-{\frac {1}{\sqrt {\alpha }}},\infty \right)}
C
2
{\displaystyle C^{2}}
是
是
是
自適應分段線性函式 (APL)[ 9]
f
(
x
)
=
max
(
0
,
x
)
+
∑
s
=
1
S
a
i
s
max
(
0
,
−
x
+
b
i
s
)
{\displaystyle f(x)=\max(0,x)+\sum _{s=1}^{S}a_{i}^{s}\max(0,-x+b_{i}^{s})}
f
′
(
x
)
=
H
(
x
)
−
∑
s
=
1
S
a
i
s
H
(
−
x
+
b
i
s
)
{\displaystyle f'(x)=H(x)-\sum _{s=1}^{S}a_{i}^{s}H(-x+b_{i}^{s})}
[4]
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
否
否
否
SoftPlus 函式[ 10]
f
(
x
)
=
ln
(
1
+
e
x
)
{\displaystyle f(x)=\ln(1+e^{x})}
f
′
(
x
)
=
1
1
+
e
−
x
{\displaystyle f'(x)={\frac {1}{1+e^{-x}}}}
(
0
,
∞
)
{\displaystyle (0,\infty )}
C
∞
{\displaystyle C^{\infty }}
是
是
否
彎曲恆等函式
f
(
x
)
=
x
2
+
1
−
1
2
+
x
{\displaystyle f(x)={\frac {{\sqrt {x^{2}+1}}-1}{2}}+x}
f
′
(
x
)
=
x
2
x
2
+
1
+
1
{\displaystyle f'(x)={\frac {x}{2{\sqrt {x^{2}+1}}}}+1}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
是
是
是
S 型線性加權函式 (SiLU)[ 11] (也被稱為Swish[ 12] )
f
(
x
)
=
x
⋅
σ
(
x
)
{\displaystyle f(x)=x\cdot \sigma (x)}
[5]
f
′
(
x
)
=
f
(
x
)
+
σ
(
x
)
(
1
−
f
(
x
)
)
{\displaystyle f'(x)=f(x)+\sigma (x)(1-f(x))}
[6]
[
≈
−
0.28
,
∞
)
{\displaystyle [\approx -0.28,\infty )}
C
∞
{\displaystyle C^{\infty }}
否
否
否
軟指數函式[ 13]
f
(
α
,
x
)
=
{
−
ln
(
1
−
α
(
x
+
α
)
)
α
for
α
<
0
x
for
α
=
0
e
α
x
−
1
α
+
α
for
α
>
0
{\displaystyle f(\alpha ,x)={\begin{cases}-{\frac {\ln(1-\alpha (x+\alpha ))}{\alpha }}&{\text{for }}\alpha <0\\x&{\text{for }}\alpha =0\\{\frac {e^{\alpha x}-1}{\alpha }}+\alpha &{\text{for }}\alpha >0\end{cases}}}
f
′
(
α
,
x
)
=
{
1
1
−
α
(
α
+
x
)
for
α
<
0
e
α
x
for
α
≥
0
{\displaystyle f'(\alpha ,x)={\begin{cases}{\frac {1}{1-\alpha (\alpha +x)}}&{\text{for }}\alpha <0\\e^{\alpha x}&{\text{for }}\alpha \geq 0\end{cases}}}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
是
是
Yes iff
α
=
0
{\displaystyle \alpha =0}
正弦函式
f
(
x
)
=
sin
(
x
)
{\displaystyle f(x)=\sin(x)}
f
′
(
x
)
=
cos
(
x
)
{\displaystyle f'(x)=\cos(x)}
[
−
1
,
1
]
{\displaystyle [-1,1]}
C
∞
{\displaystyle C^{\infty }}
否
否
是
Sinc 函式
f
(
x
)
=
{
1
for
x
=
0
sin
(
x
)
x
for
x
≠
0
{\displaystyle f(x)={\begin{cases}1&{\text{for }}x=0\\{\frac {\sin(x)}{x}}&{\text{for }}x\neq 0\end{cases}}}
f
′
(
x
)
=
{
0
for
x
=
0
cos
(
x
)
x
−
sin
(
x
)
x
2
for
x
≠
0
{\displaystyle f'(x)={\begin{cases}0&{\text{for }}x=0\\{\frac {\cos(x)}{x}}-{\frac {\sin(x)}{x^{2}}}&{\text{for }}x\neq 0\end{cases}}}
[
≈
−
0.217234
,
1
]
{\displaystyle [\approx -0.217234,1]}
C
∞
{\displaystyle C^{\infty }}
否
否
否
高斯函式
f
(
x
)
=
e
−
x
2
{\displaystyle f(x)=e^{-x^{2}}}
f
′
(
x
)
=
−
2
x
e
−
x
2
{\displaystyle f'(x)=-2xe^{-x^{2}}}
(
0
,
1
]
{\displaystyle (0,1]}
C
∞
{\displaystyle C^{\infty }}
否
否
否