乌托邦平原

火星撞擊坑

乌托邦平原(Utopia Planitia)是火星乌托邦区一处广袤的平原[1],是火星[a]太阳系中公认最大的撞击盆地,直径估计达3300公里[3]。它坐落在火星卡西乌斯区阿蒙蒂斯区刻布壬尼亚区之间,位于阿耳古瑞平原对跖点上,其中心坐标为46°42′N 117°30′E / 46.7°N 117.5°E / 46.7; 117.5[1]。1976年9月3日美国海盗2号着陆器和2021年5月14日中国天问一号任务中祝融号火星车分别着陆在该火星区域并进行了探测[4][5]

乌托邦平原
海盗2号着陆器在乌托邦平原拍摄的晨霜状冰冻(伪色)
位置埃忒里亚西北的伊希斯平原东北部
坐标46°42′N 117°30′E / 46.7°N 117.5°E / 46.7; 117.5

托邦平原上的许多岩石似乎都散铺在表面,仿佛风吹走了它们下方大部分的土壤[6][7]。上涌的地下矿物溶液在表面蒸发形成一层坚硬的表层地壳[8],部分区域表面显示出像用冰淇淋勺挖出的扇形地形,这种表面被认为是由富含水冰的永久冻土层退化而成[9]。在乌托邦平原(约北纬35–50度、东经80–115度),很多特征看上去类似地球上所发现的冰核丘[10]

2016年11月22日,美国宇航局报告称,在乌托邦平原地区发现了大量地下冰。据估计,检测到的水量相当于一座苏必利尔湖[11][12][13]

扇形地形

乌托邦平原
扇形地形导致大量地下冰的发现
水量足以填满整座苏必利尔湖[11][12][13]
火星地形
地形图

扇形地形常见于火星南北45度到60度之间的中纬度地区,其中在北半球的乌托邦平原地区[14][15]和南半球的佩纽斯和安菲特里忒破火山口地区[16][17]尤为突出。这种地形由带扇贝荷叶状边缘、无隆起边垒的低浅洼地构成,通常称为扇形洼地或简称贝状。扇形洼地可能孤立,也可能聚集,有时似乎会合并在一起。一处典型的扇形洼地显示出一侧面向赤道的缓坡和另一侧面向极地的陡坡,这种不对称地形可能是因日照差异所造成。扇形洼地被认为是升华造成的地下物质(可能是间隙冰)流失而形成,这一过程至今可能仍在发生[18]

底座形撞击坑

多边形图案地面

多边形、图案状的地面在火星的某些地区很常见[20][21][22][23][24][25]。通常认为是由地表冰升华所引起的。升华是固体冰直接转变为气体,类似与地球上的干冰。火星上显示多边形地面的地方可能表明未来定居者可在那里找到水冰。覆盖层形成的图案地面,称为纬度相关覆盖层,是在气候不同时,从天空中飘落的冰尘颗粒所形成[26][27][28][29]

乌托邦平原的其他特征

图集

海盗2号着陆器拍摄的北乌托邦平原。

流行文化

在《星际迷航》电视连续剧中,位于火星表面和上方非同步轨道中的乌托邦平原是星际联邦的一座大型造舰基地[30],在那里建造了企业号挑战号航海者号圣保罗号等星舰[30]

烈焰红唇组合英语the Flaming Lips在2002年发行的专辑《良美大战粉红机器人》中的一首歌曲“乘气球靠近帕弗尼斯山(乌托邦平原)英语Approaching Pavonis Mons by Balloon (Utopia Planitia)”亦是以该地区为题。

火星交互地图

 阿刻戎堑沟群阿西达利亚平原阿尔巴山亚马逊平原阿俄尼亚高地阿拉伯高地阿耳卡狄亚平原阿耳古瑞高原阿耳古瑞平原克律塞平原克拉里塔斯槽沟塞东尼亚区桌山代达利亚高原埃律西昂山埃律西昂平原盖尔撞击坑哈德里亚卡火山口希腊山脉希腊平原赫斯珀利亚高原霍顿撞击坑伊卡利亚高原伊希斯平原耶泽罗撞击坑罗蒙诺索夫撞击坑卢库斯高原吕科斯沟脊地李奥撞击坑卢娜高原马莱阿高原马拉尔迪陨击坑玛莱奥提斯堑沟群Mareotis Tempe珍珠高地米氏陨击坑米兰科维奇撞击坑内彭西斯桌山群涅瑞达山脉尼罗瑟提斯桌山群诺亚高地奥林波斯槽沟群奥林帕斯山南极高原普罗米修高地普罗敦尼勒斯桌山群塞壬高地西绪福斯高原太阳高原叙利亚高原坦塔罗斯槽沟群滕比高地辛梅利亚高地示巴高地塞壬高地塔尔西斯山群特拉克图斯坑链第勒纳高地尤利西斯山乌拉纽斯火山口乌托邦平原水手谷北方大平原克珊忒高地
  火星全球地形交互式图像地图。将悬停在图像上可查看 60 多个著名地理特征的名称,单击可链接到它们。图底颜色表示相对高度,根据来自美国宇航局火星全球探勘者号火星轨道器激光高度计的数据。白色和棕色表示海拔最高(+12 至 +8 公里);其次是粉红和红色(+8 至 +3 公里);黄色为 0 公里;绿色和蓝色是较低的高度(低至 -8 公里)。轴线纬度极地已备注。

另请查看

注释

  1. ^ Officially, Utopia is an albedo feature.[2]

参考文献

  1. ^ 1.0 1.1 Utopia Planitia. Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. [2015-03-10]. (原始内容存档于2021-05-18). 
  2. ^ Utopia. Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. [2022-04-01]. (原始内容存档于2021-05-18). 
  3. ^ McGill, G. E. Buried topography of Utopia, Mars: Persistence of a giant impact depression. Journal of Geophysical Research. 1989-03-10, 94: 2753–2759. Bibcode:1989JGR....94.2753M. doi:10.1029/JB094iB03p02753. 
  4. ^ China succeeds on country's first Mars landing attempt with Tianwen-1. nasaspaceglight.com. [May 15, 2021]. (原始内容存档于2021-05-14). 
  5. ^ China's first Mars rover Tianwen-1 launches this week. Here's what it will do.. Space.com. [2022-04-01]. (原始内容存档于2021-05-19). 
  6. ^ Mutch, T. et al. 1976. The Surface of Mars: The View from the Viking 2 Lander. Science: 194. 1277–1283.
  7. ^ Hartmann, W. 2003. A Traveler's Guide to Mars. Workman Publishing. NY NY.
  8. ^ Arvidson, R. A. Binder, and K. Jones. 1976. The Surface of Mars. Scientific American: 238. 76–89.
  9. ^ Sejourne, A. et al. 2012. Evidence of an eolian ice-rich and stratified permafrost in Utopia Planitia, Mars. Icarus. 60:248-254.
  10. ^ Soare, E., et al. 2019.Possible (closed system) pingo and ice-wedge/thermokarst complexes at the mid latitudes of Utopia Planitia, Mars. Icarus. https://doi.org/10.1016/j.icarus.2019.03.010
  11. ^ 11.0 11.1 Staff. Scalloped Terrain Led to Finding of Buried Ice on Mars. NASA. November 22, 2016 [November 23, 2016]. (原始内容存档于2018-12-26). 
  12. ^ 12.0 12.1 Lake of frozen water the size of New Mexico found on Mars – NASA. The Register. November 22, 2016 [November 23, 2016]. (原始内容存档于2018-12-26). 
  13. ^ 13.0 13.1 Mars Ice Deposit Holds as Much Water as Lake Superior. NASA. November 22, 2016 [November 23, 2016]. (原始内容存档于2018-12-26). 
  14. ^ Lefort, A.; Russell, P. S.; Thomas, N.; McEwen, A. S.; Dundas, C. M.; Kirk, R. L. Observations of periglacial landforms in Utopia Planitia with the High Resolution Imaging Science Experiment (HiRISE). Journal of Geophysical Research. 2009, 114 (E4): E04005 [2022-04-01]. Bibcode:2009JGRE..114.4005L. doi:10.1029/2008JE003264. (原始内容存档于2021-12-10). 
  15. ^ Morgenstern, A; Hauber, E; Reiss, D; van Gasselt, S; Grosse, G; Schirrmeister, L. Deposition and degradation of a volatile-rich layer in Utopia Planitia, and implications for climate history on Mars (PDF). Journal of Geophysical Research: Planets. 2007, 112 (E6): E06010 [2022-04-01]. Bibcode:2007JGRE..112.6010M. doi:10.1029/2006JE002869 . (原始内容 (PDF)存档于2021-07-10). 
  16. ^ Lefort, A.; Russell, P.S.; Thomas, N. Scalloped terrains in the Peneus and Amphitrites Paterae region of Mars as observed by HiRISE. Icarus. 2010, 205 (1): 259. Bibcode:2010Icar..205..259L. doi:10.1016/j.icarus.2009.06.005. 
  17. ^ Zanetti, M.; Hiesinger, H.; Reiss, D.; Hauber, E.; Neukum, G. Scalloped Depression Development on Malea Planum and the Southern Wall of the Hellas Basin, Mars (PDF). Lunar and Planetary Science. 2009, 40. p. 2178, abstract 2178 [2022-04-01]. Bibcode:2009LPI....40.2178Z. (原始内容 (PDF)存档于2016-06-16). 
  18. ^ HiRISE | Scallops and Polygons in the Utopia Planitia (PSP_007173_2245). hirise.lpl.arizona.edu. [2022-04-01]. (原始内容存档于2022-04-14). 
  19. ^ Dundas, C., S. Bryrne, A. McEwen. 2015. Modeling the development of martian sublimation thermokarst landforms. Icarus: 262, 154-169.
  20. ^ Kostama, V.-P., M. Kreslavsky, Head, J. 2006. Recent high-latitude icy mantle in the northern plains of Mars: Characteristics and ages of emplacement. Geophys. Res. Lett. 33 (L11201). doi:10.1029/2006GL025946.
  21. ^ Malin, M., Edgett, K. 2001. Mars Global Surveyor Mars Orbiter Camera: Interplanetary cruise through primary mission. J. Geophys. Res. 106 (E10), 23429–23540.
  22. ^ Milliken, R., et al. 2003. Viscous flow features on the surface of Mars: Observations from high-resolution Mars Orbiter Camera (MOC) images. J. Geophys. Res. 108 (E6). doi:10.1029/2002JE002005.
  23. ^ Mangold, N. 2005. High latitude patterned grounds on Mars: Classification, distribution and climatic control. Icarus 174, 336–359.
  24. ^ Kreslavsky, M., Head, J. 2000. Kilometer-scale roughness on Mars: Results from MOLA data analysis. J. Geophys. Res. 105 (E11), 26695–26712.
  25. ^ Seibert, N., J. Kargel. 2001. Small-scale martian polygonal terrain: Implications for liquid surface water. Geophys. Res. Lett. 28 (5), 899–902. S
  26. ^ Hecht, M. 2002. Metastability of water on Mars. Icarus 156, 373–386
  27. ^ Mustard, J., et al. 2001. Evidence for recent climate change on Mars from the identification of youthful near-surface ground ice. Nature 412 (6845), 411–414.
  28. ^ Kreslavsky, M.A., Head, J.W., 2002. High-latitude Recent Surface Mantle on Mars: New Results from MOLA and MOC. European Geophysical Society XXVII, Nice.
  29. ^ Head, J.W., Mustard, J.F., Kreslavsky, M.A., Milliken, R.E., Marchant, D.R., 2003.Recent ice ages on Mars. Nature 426 (6968), 797–802.
  30. ^ 30.0 30.1 Okuda, Michael; Denise Okuda & Debbie Mirek. The Star Trek Encyclopedia. Pocket Books. 1999. ISBN 0-671-53609-5. 

外部链接