四格骨牌

四格骨牌(Tetromino),又稱四連塊四連方,是一種多格骨牌,每塊以四個全等的正方形連成[1][2],反射或旋轉視作同一種共有五種,可以英文字母代表。

所有的四格骨牌

四格骨牌屬於平面的圖案,在多連立方中有對應的四連立方或四立方體(tetracube),是由四個全等的立方體組成。

四格骨牌常出現在遊戲中,像在电子游戏俄羅斯方塊中就是移動四格骨牌來進行遊戲[3]

四格骨牌

 
五種四格骨牌,從上到下分別可以用英文字母I, O, Z, T, L標示,其中正方形標示深色及淺色的顏色,相鄰方形用不同的顏色,五種四格骨牌,淺色方形有11個,深色方形有9個,無法完全的放在4×5或2×10的長方形中,因為這些長方形若將方塊輪流標示深色及淺色,最後深色方形及淺色方形數量會相同

自由四格骨牌

多格骨牌是將正方形邊和邊相連組成的形狀。自由骨牌(free polyomino)是指考慮全等關係的多格骨牌,若二個自由骨牌彼此全等,視為是同一種自由骨牌。因此二個自由骨牌若在平移旋轉反射後相等,就算是同一種自由骨牌。

自由四格骨牌是由四個方形組成的自由骨牌,一共有五種。

單面四格骨牌

單面四格骨牌(one-sided tetrominoes)允許平移及旋轉,但不能反射(不能翻面,所以稱為單面骨牌)。在遊戲俄羅斯方塊中出現的都是單面四格骨牌。單面四格骨牌共有七種,其中有三種有反射對稱性,反射後的圖案和原來相同,不會因為只考慮單面四格骨牌而使數量加倍,這些骨牌是:

  •   I(也稱為直線骨牌,Straight Polyomino"[4]):四個方塊以直線排列。
  •   O(也稱為方形骨牌,Square Polyomino[5]):四個方塊排成2×2的方形。
  •   T(也稱為T形骨牌,T-Polyomino[6]):三個方塊排成一列,另一個方塊在一列骨牌的中間下方。

剩下的四種骨牌有不對稱性,四種骨牌分為二類,每類中的兩種骨牌互為另一種的反射。

L型骨牌,L-Polyominos:[7]

  •   J型:三個方塊排成一列,另一個方塊在一列骨牌的右側下方。
  •   L型:三個方塊排成一列,另一個方塊在一列骨牌的左側下方。

斜骨牌,Skew Polyominos:[8]

  •   S型:二個水平排列的骨牌,上面再放二個水平排列的骨牌,往右斜一格。
  •   Z型:二個水平排列的骨牌,上面再放二個水平排列的骨牌,往左斜一格。

若是自由四格骨牌,J型骨牌等於L型骨牌,S型骨牌等於Z型骨牌,但若在二維空間內,不允許翻面,不可能將J型骨牌變成L型骨牌,或是讓S型骨牌變成Z型骨牌。

固定四格骨牌

固定四格骨牌(fixed tetramino)只允許平移,不允許旋轉及反射。固定四格骨牌有二種I型、四種J型、四種L型、一種O型、二種S型、四種T型及二種Z型骨牌,共有19種固定四格骨牌。

用四格骨牌填滿長方形

雖然四格骨牌共有5種,加起來有20個方格,不過無法用5個四格骨牌填滿一個長方形,此情形不同於五格骨牌,較類似六格骨牌,證明時要用到肢解西洋棋盤問題的概念:

20個方格的長方形,若將方格輪流標示深色及淺色,最後深色方格及淺色方格會各有10個,但一組的自由四格骨牌(共五種)會有11個某種顏色的方格,剩下另一個種顏色的方格有9個(T形骨牌會有一種顏色的方格有三個,另一種顏色有三個,其他骨牌的兩種顏色的方格各有二個),因此無法填滿。若考慮一組的單面四格骨牌(共七種)也無法完全的放在28個方格的長方形中。

此外,任何奇數組的自由四格骨牌或單面四格骨牌都無法組成長方形。但若二組自由四格骨牌可以填滿4×10及5×8的長方形。

5×8長方形
 
4×10長方形
 

以類似方式,二組單面四格骨牌可以填滿一個長方形,方法還不止一種。因此任何偶數組的自由四格骨牌或單面四格骨牌都無法填滿長方形[9]

以下是由二組自由四格骨牌,高度為1時所形成的四立方體,填滿2×4×5及2×2×10的長方體。

2×4×5 長方體
 第一層      :     第二層

Z Z T t I    :    l T T T i
L Z Z t I    :    l l l t i
L z z t I    :    o o z z i
L L O O I    :    o o O O i
2×2×10 長方體
      第一層           :          第二層

L L L z z Z Z T O O    :    o o z z Z Z T T T l
L I I I I t t t O O    :    o o i i i i t l l l

四立方體

五種四格骨牌都可以成為四立方體,只要將高度延伸一單位即可。J型和L型的四立方體是相同的,S型和Z型的四立方體也是相同的,因為只要翻面就可以由一種四立方體變成另一種。

此外,還有三種四立方體沒有對應的四格骨牌,這些是由V型的三立方體上面再加一個立方體而得。

  •  右旋型:單位立方體放在順時針的一側,在三維中有不對應性(下圖中用D表示)。
  •  左旋型:單位立方體放在逆時針的一側,在三維中有不對應性(下圖中用S表示)。
  •  分支型:單位立方體放在彎曲點上,在三維中沒有不對應性(下圖中用B表示)。

因此有八個四立方體。

多立方體一般只允許平移及旋轉,像右旋型及左旋型雖是鏡射對稱,但和平面的不同,無法用翻面的方式讓右旋型變成左旋型。

用四立方體填滿長方體

在三維的情形,這八個四立方體可以填滿4×4×2或8×2×2的長方體,以下的D、S、B及Z分別表示右旋型、左旋型、分支型及平面的Z型(S型)。

4×4×2 長方體

 第一層  :  第二層

S T T T  :  S Z Z B
S S T B  :  Z Z B B
O O L D  :  L L L D
O O D D  :  I I I I

8×2×2 長方體

     第一層     :     第二層

D Z Z L O T T T : D L L L O B S S
D D Z Z O B T S : I I I I O B B S

若立體不對應的D型及S型視為一樣的,則七個四立方體可以填滿7×2×2的長方體,其中的C表示D型或S型。

    第一層    :    第二層

L L L Z Z B B : L C O O Z Z B
C I I I I T B : C C O O T T T

參考資料

  1. ^ Golomb, Solomon W. Polyominoes 2nd. Princeton, New Jersey: Princeton University Press. 1994. ISBN 0-691-02444-8. 
  2. ^ Redelmeier, D. Hugh. Counting polyominoes: yet another attack. Discrete Mathematics. 1981, 36: 191–203. doi:10.1016/0012-365X(81)90237-5. 
  3. ^ "About Tetris"页面存档备份,存于互联网档案馆), Tetris.com. Retrieved 2014-04-19.
  4. ^ Weisstein, Eric W. "Straight Polyomino.页面存档备份,存于互联网档案馆)" From MathWorld--A Wolfram Web Resource.
  5. ^ Weisstein, Eric W. "Polyomino.[永久失效連結]" From MathWorld--A Wolfram Web Resource.
  6. ^ Weisstein, Eric W. "T-Polyomino.页面存档备份,存于互联网档案馆)" From MathWorld--A Wolfram Web Resource.
  7. ^ Weisstein, Eric W. "L-Polyomino.页面存档备份,存于互联网档案馆)" From MathWorld--A Wolfram Web Resource.
  8. ^ Weisstein, Eric W. "Skew Polyomino.页面存档备份,存于互联网档案馆)" From MathWorld--A Wolfram Web Resource.
  9. ^ ttet11.pdf (PDF). [28 May 2015]. (原始内容存档 (PDF)于2016-02-20). 

相關條目