暗氧(英語:Dark Oxygen)是指通過不涉及依賴光的含氧光合作用的過程產生分子(O2)。因此,此名稱所使用的「暗」意義,與「生物暗物質英语Biological dark matter」(例如)一詞中所使用的「暗」意義不同,前者表示科學評估的晦澀不明,而非光度學上的意義。雖然地球上大部分的氧是由植物和光合作用活躍的微生物透過光合作用產生的,但暗氧是透過各種非生物和生物過程產生的,並可能在黑暗、缺氧的環境中支持有氧新陳代謝。

非生物製造

暗氧的非生物製造可透過幾種機制發生,例如:

  • 水的輻解:該過程通常發生在黑暗的地質生態系統中,例如含水層,周圍岩石中放射性元素的衰變導致水分子分解,產生氧[1]
  • 表面結合自由基的氧化作用:在石英等含矽礦物上,表面結合的自由基會發生氧化作用,進而產生氧[2][3][4]

除了直接形成氧外,這些過程通常會產生活性氧類(ROS),例如氫氧自由基(OH)、超氧自由基(O2•-) 以及過氧化氫(H2O2)。這些活性氧类可以透過超氧化物歧化酶過氧化氫酶等酵素,以生物方式轉換成氧和水,或透過與亞鐵和其他還原金屬的反應,以非生物方式轉換成氧和水[5][6]

生物製造

暗氧的生物製造由微生物透過不同的微生物過程進行,包括

  • 亞氯酸鹽分解英语Chlorite dismutase:這包括將亞氯酸鹽(ClO2-)分解成 O2 和氯離子[7]
  • 一氧化氮分解:這包括將一氧化氮(NO)分解成 O2 和氮氣(N2)或一氧化二氮(N2O)[8][9][10]
  • 透過甲烷菌素裂解水分子:甲烷菌素可溶解水分子以產生 O2[11]

這些過程使微生物群落能夠在缺氧的環境中維持有氧新陳代謝。

實驗證據

最近的研究提供了在各種地質和次表層環境中產生暗氧的證據:

  • 地下水生態系統:在以前假定為缺氧的老地下水中測量到了溶解氧濃度。O2 的存在歸因於微生物群落能夠產生暗氧和水的輻射分解。宏基因组学分析和氧同位素英语Isotope analysis研究進一步支持了本地氧生成而非大氣混合[12]
 
庫克群島近海的礦床
  • 海底環境:一項針對深海海底錳結核的研究提出了非生物暗氧產量[13]。推測的機制是電解,因為在結核表面記錄到電壓。然而,並未測量到足以分裂水的電壓,電解的能量來源不明,而且先前在同一區域進行的實驗也未發現任何產氧的證據[14][15][16][17][18]

影響

儘管暗氧產生的途徑多樣化,傳統上仍被認為在地球系統中微不足道。最近的證據顯示,在黑暗、顯然缺氧的環境中,氧的產生與消耗規模遠大於先前的想像,對全球生物地球化學循環造成影響[19][20]

參考資料

  1. ^ Das, Soumya. Critical Review of Water Radiolysis Processes, Dissociation Products, and Possible Impacts on the Local Environment: A Geochemist. Australian Journal of Chemistry. 2013, 66 (5): 522. ISSN 0004-9425. doi:10.1071/CH13012 (英语). 
  2. ^ He, Hongping; Wu, Xiao; Xian, Haiyang; Zhu, Jianxi; Yang, Yiping; Lv, Ying; Li, Yiliang; Konhauser, Kurt O. An abiotic source of Archean hydrogen peroxide and oxygen that pre-dates oxygenic photosynthesis. Nature Communications. 2021-11-16, 12 (1): 6611. Bibcode:2021NatCo..12.6611H. ISSN 2041-1723. PMC 8595356 . PMID 34785682. doi:10.1038/s41467-021-26916-2 (英语). 
  3. ^ He, Hongping; Wu, Xiao; Zhu, Jianxi; Lin, Mang; Lv, Ying; Xian, Haiyang; Yang, Yiping; Lin, Xiaoju; Li, Shan; Li, Yiliang; Teng, H. Henry; Thiemens, Mark H. A mineral-based origin of Earth's initial hydrogen peroxide and molecular oxygen. Proceedings of the National Academy of Sciences. 2023-03-28, 120 (13): e2221984120. Bibcode:2023PNAS..12021984H. ISSN 0027-8424. PMC 10068795 . PMID 36940327. doi:10.1073/pnas.2221984120 (英语). 
  4. ^ Stone, Jordan; Edgar, John O.; Gould, Jamie A.; Telling, Jon. Tectonically-driven oxidant production in the hot biosphere. Nature Communications. 2022-08-08, 13 (1): 4529. Bibcode:2022NatCo..13.4529S. ISSN 2041-1723. PMC 9360021 . PMID 35941147. doi:10.1038/s41467-022-32129-y (英语). 
  5. ^ Sutherland, Kevin M.; Hemingway, Jordon D.; Johnston, David T. The influence of reactive oxygen species on "respiration" isotope effects. Geochimica et Cosmochimica Acta. May 2022, 324: 86–101. Bibcode:2022GeCoA.324...86S. doi:10.1016/j.gca.2022.02.033 (英语). 
  6. ^ Xu, Jie; Sahai, Nita; Eggleston, Carrick M.; Schoonen, Martin A.A. Reactive oxygen species at the oxide/water interface: Formation mechanisms and implications for prebiotic chemistry and the origin of life. Earth and Planetary Science Letters. February 2013, 363: 156–167. Bibcode:2013E&PSL.363..156X. doi:10.1016/j.epsl.2012.12.008 (英语). 
  7. ^ Xu, Jianlin; Logan, Bruce E. Measurement of chlorite dismutase activities in perchlorate respiring bacteria. Journal of Microbiological Methods. August 2003, 54 (2): 239–247. PMID 12782379. doi:10.1016/S0167-7012(03)00058-7 (英语). 
  8. ^ Ettwig, Katharina F.; Speth, Daan R.; Reimann, Joachim; Wu, Ming L.; Jetten, Mike S. M.; Keltjens, Jan T. Bacterial oxygen production in the dark. Frontiers in Microbiology. 2012, 3: 273. ISSN 1664-302X. PMC 3413370 . PMID 22891064. doi:10.3389/fmicb.2012.00273 . 
  9. ^ Kraft, Beate; Jehmlich, Nico; Larsen, Morten; Bristow, Laura A.; Könneke, Martin; Thamdrup, Bo; Canfield, Donald E. Oxygen and nitrogen production by an ammonia-oxidizing archaeon. Science. 2022-01-07, 375 (6576): 97–100. Bibcode:2022Sci...375...97K. ISSN 0036-8075. PMID 34990242. doi:10.1126/science.abe6733 (英语). 
  10. ^ Murali, Ranjani; Pace, Laura A.; Sanford, Robert A.; Ward, L. M.; Lynes, Mackenzie M.; Hatzenpichler, Roland; Lingappa, Usha F.; Fischer, Woodward W.; Gennis, Robert B.; Hemp, James. Diversity and evolution of nitric oxide reduction in bacteria and archaea. Proceedings of the National Academy of Sciences. 2024-06-25, 121 (26): e2316422121. Bibcode:2024PNAS..12116422M. ISSN 0027-8424. PMC 11214002 . PMID 38900790. doi:10.1073/pnas.2316422121 (英语).  已忽略未知参数|pmc-embargo-date= (帮助)
  11. ^ Dershwitz, Philip; Bandow, Nathan L.; Yang, Junwon; Semrau, Jeremy D.; McEllistrem, Marcus T.; Heinze, Rafael A.; Fonseca, Matheus; Ledesma, Joshua C.; Jennett, Jacob R.; DiSpirito, Ana M.; Athwal, Navjot S.; Hargrove, Mark S.; Bobik, Thomas A.; Zischka, Hans; DiSpirito, Alan A. Parales, Rebecca E. , 编. Oxygen Generation via Water Splitting by a Novel Biogenic Metal Ion-Binding Compound. Applied and Environmental Microbiology. 2021-06-25, 87 (14): e0028621. Bibcode:2021ApEnM..87E.286D. ISSN 0099-2240. PMC 8231713 . PMID 33962982. doi:10.1128/AEM.00286-21 (英语). 
  12. ^ Ruff, S. Emil; Humez, Pauline; de Angelis, Isabella Hrabe; Diao, Muhe; Nightingale, Michael; Cho, Sara; Connors, Liam; Kuloyo, Olukayode O.; Seltzer, Alan; Bowman, Samuel; Wankel, Scott D.; McClain, Cynthia N.; Mayer, Bernhard; Strous, Marc. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications. 2023-06-13, 14 (1): 3194. Bibcode:2023NatCo..14.3194R. ISSN 2041-1723. PMC 10264387 . PMID 37311764. doi:10.1038/s41467-023-38523-4 (英语). 
  13. ^ Sweetman, Andrew K.; Smith, Alycia J.; de Jonge, Danielle S. W.; Hahn, Tobias; Schroedl, Peter; Silverstein, Michael; Andrade, Claire; Edwards, R. Lawrence; Lough, Alastair J. M.; Woulds, Clare; Homoky, William B.; Koschinsky, Andrea; Fuchs, Sebastian; Kuhn, Thomas; Geiger, Franz. Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience. August 2024, 17 (8): 737–739. ISSN 1752-0894. doi:10.1038/s41561-024-01480-8  (英语). 
  14. ^ Smith, K. L.; Laver, M. B.; Brown, N. O. Sediment community oxygen consumption and nutrient exchange in the central and eastern North Pacific1. Limnology and Oceanography. 1983, 28 (5): 882–898. ISSN 0024-3590. doi:10.4319/lo.1983.28.5.0882 (英语). 
  15. ^ Khripounoff, Alexis; Caprais, Jean-Claude; Crassous, Philippe; Etoubleau, Joël. Geochemical and biological recovery of the disturbed seafloor in polymetallic nodule fields of the Clipperton-Clarion Fracture Zone (CCFZ) at 5,000-m depth. Limnology and Oceanography. 2006, 51 (5): 2033–2041. doi:10.4319/lo.2006.51.5.2033 (英语). 
  16. ^ Vonnahme, T. R.; Molari, M.; Janssen, F.; Wenzhöfer, F.; Haeckel, M.; Titschack, J.; Boetius, A. Effects of a deep-sea mining experiment on seafloor microbial communities and functions after 26 years. Science Advances. 2020, 6 (18). ISSN 2375-2548. PMC 7190355 . PMID 32426478. doi:10.1126/sciadv.aaz5922 (英语). 
  17. ^ Stratmann, Tanja; Voorsmit, Ilja; Gebruk, Andrey; Brown, Alastair; Purser, Autun; Marcon, Yann; Sweetman, Andrew K.; Jones, Daniel O. B.; van Oevelen, Dick. Recovery of Holothuroidea population density, community composition, and respiration activity after a deep‐sea disturbance experiment. Limnology and Oceanography. 2018, 63 (5): 2140–2153. ISSN 0024-3590. doi:10.1002/lno.10929 (英语). 
  18. ^ An, Sung-Uk; Baek, Ju-Wook; Kim, Sung-Han; Baek, Hyun-Min; Lee, Jae Seong; Kim, Kyung-Tae; Kim, Kyeong Hong; Hyeong, Kiseong; Chi, Sang-Bum; Park, Chan Hong. Regional differences in sediment oxygen uptake rates in polymetallic nodule and co-rich polymetallic crust mining areas of the Pacific Ocean. Deep Sea Research Part I: Oceanographic Research Papers. 2024, 207: 104295. ISSN 0967-0637. doi:10.1016/j.dsr.2024.104295. 
  19. ^ Sweetman, Andrew K.; Smith, Alycia J.; de Jonge, Danielle S. W.; Hahn, Tobias; Schroedl, Peter; Silverstein, Michael; Andrade, Claire; Edwards, R. Lawrence; Lough, Alastair J. M.; Woulds, Clare; Homoky, William B.; Koschinsky, Andrea; Fuchs, Sebastian; Kuhn, Thomas; Geiger, Franz. Evidence of dark oxygen production at the abyssal seafloor. Nature Geoscience. August 2024, 17 (8): 737–739. ISSN 1752-0894. doi:10.1038/s41561-024-01480-8  (英语). 
  20. ^ Ruff, S. Emil; Humez, Pauline; de Angelis, Isabella Hrabe; Diao, Muhe; Nightingale, Michael; Cho, Sara; Connors, Liam; Kuloyo, Olukayode O.; Seltzer, Alan; Bowman, Samuel; Wankel, Scott D.; McClain, Cynthia N.; Mayer, Bernhard; Strous, Marc. Hydrogen and dark oxygen drive microbial productivity in diverse groundwater ecosystems. Nature Communications. 2023-06-13, 14 (1). ISSN 2041-1723. PMC 10264387 . PMID 37311764. doi:10.1038/s41467-023-38523-4 (英语).