User:Phantomsq/命題邏輯

基本術語

  • 陳述
  • 命題
  • 原子命題(簡單命題)
  • 命題公式
  • 命題常元
  • 命題變元

命題連接詞

意義 符號 其他符號 說明
否定   ~ 非P
合取   P且Q
析取   P或Q
蘊涵   若P則Q,P為Q的充分條件,Q為P的必要條件
等值   P若且唯若Q,P為Q的充要條件

二元連接詞

P Q      
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

推理規則

基本及衍生的推理形式:

名稱 推理式 說明
排中律 (Law of excluded middle)     or not   is true
無矛盾律 (Law of non-contradiction)     and not   is false, is a true statement
雙否定律 (Double Negation, DN)     is equivalent to the negation of not  
合取律 (Conjunction, conj)     and   are true separately; therefore they are true conjointly
簡化律 (Simplification, simp)     and   are true; therefore   is true
添加律 (Addition, add)     is true; therefore the disjunction (  or  ) is true
重言式1 (Tautology)     is true is equiv. to   is true or   is true
重言式2 (Tautology)     is true is equiv. to   is true and   is true
實質蘊涵 (Material Implication)   If   then   is equiv. to not   or  
換質換位律 (Transposition, trans)   If   then   is equiv. to if not   then not  
實質等值1 (Material Equivalence)   (  iff  ) is equiv. to (if   is true then   is true) and (if   is true then   is true)
實質等值2 (Material Equivalence)   (  iff  ) is equiv. to either (  and   are true) or (both   and   are false)
實質等值3 (Material Equivalence)   (  iff  ) is equiv to., both (  or not   is true) and (not   or   is true)
交換律1 (Commutation, comm)   (  or  ) is equiv. to (  or  )
交換律2 (Commutation, comm)   (  and  ) is equiv. to (  and  )
交換律3 (Commutation, comm)   (  is equiv. to  ) is equiv. to (  is equiv. to  )
結合律1 (Association, asso)     or (  or  ) is equiv. to (  or  ) or  
結合律2 (Association, asso)     and (  and  ) is equiv. to (  and  ) and  
分配律1 (Distribution, dist)     and (  or  ) is equiv. to (  and  ) or (  and  )
分配律2 (Distribution, dist)     or (  and  ) is equiv. to (  or  ) and (  or  )
狄摩根定理1 (De Morgan's Theorem, DeM)   The negation of (  and  ) is equiv. to (not   or not  )
狄摩根定理2 (De Morgan's Theorem, DeM)   The negation of (  or  ) is equiv. to (not   and not  )
正前律 (Modus Ponens, MP)   If   then  ;  ; therefore  
負後律 (Modus Tollens, MT)   If   then  ; not  ; therefore not  
選言三段論 (Disjunctive Syllogism, DS)   Either   or  , or both; not  ; therefore,  
假言三段論 (Hypothetical Syllogism, HS)   If   then  ; if   then  ; therefore, if   then  
移出律 (Exportation)   from (if   and   are true then   is true) we can prove (if   is true then   is true, if   is true)
移入律 (Importation)   If   then (if   then  ) is equivalent to if   and   then  
組合律 (Composition, comp)   If   then  ; and if   then  ; therefore if   is true then   and   are true
建設性兩難 (Constructive Dilemma, CD)   If   then  ; and if   then  ; but   or  ; therefore   or  
破壞性兩難 (Destructive Dilemma, DD)   If   then  ; and if   then  ; but not   or not  ; therefore not   or not  
雙向兩難 (Bidirectional Dilemma, BD)   If   then  ; and if   then  ; but   or not  ; therefore   or not  
歸繆法 (Reductio ad absurdum)  
枚舉法 (Proof by cases)  
爆炸原理 (Principle of explosion)  

注釋