用户:Phantomsq/命题逻辑

基本术语

  • 陈述
  • 命题
  • 原子命题(简单命题)
  • 命题公式
  • 命题常元
  • 命题变元

命题连接词

意义 符号 其他符号 说明
否定   ~ 非P
合取   P且Q
析取   P或Q
蕴涵   若P则Q,P为Q的充分条件,Q为P的必要条件
等值   P当且仅当Q,P为Q的充要条件

二元连接词

P Q      
0 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 1 1
0 1 0 0 0 1 0 0 1 1 0 0 1 1 0 1 1 1
1 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 1
1 1 0 1 0 0 0 1 1 0 1 0 0 1 1 1 0 1
f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

推理规则

基本及衍生的推理形式:

名称 推理式 说明
排中律 (Law of excluded middle)     or not   is true
无矛盾律 (Law of non-contradiction)     and not   is false, is a true statement
双否定律 (Double Negation, DN)     is equivalent to the negation of not  
合取律 (Conjunction, conj)     and   are true separately; therefore they are true conjointly
简化律 (Simplification, simp)     and   are true; therefore   is true
添加律 (Addition, add)     is true; therefore the disjunction (  or  ) is true
重言式1 (Tautology)     is true is equiv. to   is true or   is true
重言式2 (Tautology)     is true is equiv. to   is true and   is true
实质蕴涵 (Material Implication)   If   then   is equiv. to not   or  
换质换位律 (Transposition, trans)   If   then   is equiv. to if not   then not  
实质等值1 (Material Equivalence)   (  iff  ) is equiv. to (if   is true then   is true) and (if   is true then   is true)
实质等值2 (Material Equivalence)   (  iff  ) is equiv. to either (  and   are true) or (both   and   are false)
实质等值3 (Material Equivalence)   (  iff  ) is equiv to., both (  or not   is true) and (not   or   is true)
交换律1 (Commutation, comm)   (  or  ) is equiv. to (  or  )
交换律2 (Commutation, comm)   (  and  ) is equiv. to (  and  )
交换律3 (Commutation, comm)   (  is equiv. to  ) is equiv. to (  is equiv. to  )
结合律1 (Association, asso)     or (  or  ) is equiv. to (  or  ) or  
结合律2 (Association, asso)     and (  and  ) is equiv. to (  and  ) and  
分配律1 (Distribution, dist)     and (  or  ) is equiv. to (  and  ) or (  and  )
分配律2 (Distribution, dist)     or (  and  ) is equiv. to (  or  ) and (  or  )
狄摩根定理1 (De Morgan's Theorem, DeM)   The negation of (  and  ) is equiv. to (not   or not  )
狄摩根定理2 (De Morgan's Theorem, DeM)   The negation of (  or  ) is equiv. to (not   and not  )
正前律 (Modus Ponens, MP)   If   then  ;  ; therefore  
负后律 (Modus Tollens, MT)   If   then  ; not  ; therefore not  
选言三段论 (Disjunctive Syllogism, DS)   Either   or  , or both; not  ; therefore,  
假言三段论 (Hypothetical Syllogism, HS)   If   then  ; if   then  ; therefore, if   then  
移出律 (Exportation)   from (if   and   are true then   is true) we can prove (if   is true then   is true, if   is true)
移入律 (Importation)   If   then (if   then  ) is equivalent to if   and   then  
组合律 (Composition, comp)   If   then  ; and if   then  ; therefore if   is true then   and   are true
建设性两难 (Constructive Dilemma, CD)   If   then  ; and if   then  ; but   or  ; therefore   or  
破坏性两难 (Destructive Dilemma, DD)   If   then  ; and if   then  ; but not   or not  ; therefore not   or not  
双向两难 (Bidirectional Dilemma, BD)   If   then  ; and if   then  ; but   or not  ; therefore   or not  
归缪法 (Reductio ad absurdum)  
枚举法 (Proof by cases)  
爆炸原理 (Principle of explosion)  

注释