定义
在球坐标系下,拉普拉斯算符 作用在一三维向量场 上可以写为
∇
2
A
→
(
r
,
θ
,
ϕ
)
=
0
{\displaystyle \nabla ^{2}{\vec {A}}(r,\theta ,\phi )=0}
利用分离变数法 可以将此一方程式的解分解为一系列本征函数 的线性组合
A
→
=
R
l
(
r
)
Y
m
,
l
(
n
)
(
θ
,
ϕ
)
,
n
=
1
,
2
,
3
{\displaystyle {\vec {A}}=R_{l}(r)\mathbf {Y} _{m,l}^{(n)}(\theta ,\phi ),n=1,2,3}
其中的径向解
R
l
{\displaystyle R_{l}}
与标量球谐函数 相同,而
Y
m
,
l
(
n
)
{\displaystyle \mathbf {Y} _{m,l}^{(n)}}
为一与角度相关的向量解,也就是向量球谐函数 。
向量球谐函数依用途有很多定义方式[ 1] [ 2] [ 3] [ 4] [ 5] 。这边我们依照 Barrera 等人的定义,以对球谐函数 Yℓm (θ , φ ) 为基础,将三个向量球谐函数表示为
Y
l
m
=
Y
l
m
r
^
{\displaystyle \mathbf {Y} _{lm}=Y_{lm}{\hat {\mathbf {r} }}}
Ψ
l
m
=
r
∇
Y
l
m
{\displaystyle \mathbf {\Psi } _{lm}=r\nabla Y_{lm}}
Φ
l
m
=
r
×
∇
Y
l
m
{\displaystyle \mathbf {\Phi } _{lm}=\mathbf {r} \times \nabla Y_{lm}}
这边
r
{\displaystyle \mathbf {r} }
是对应球座标 (r , θ , φ ) 的向量,而
r
^
{\displaystyle {\hat {\mathbf {r} }}}
则为其单位向量 。
主要特性
依照上述 Barrera 的定义,向量球谐函数有以下特性:
对称性
与球谐函数相同,向量球谐函数有对称性
Y
l
,
−
m
=
(
−
1
)
m
Y
l
m
∗
Ψ
l
,
−
m
=
(
−
1
)
m
Ψ
l
m
∗
Φ
l
,
−
m
=
(
−
1
)
m
Φ
l
m
∗
{\displaystyle \mathbf {Y} _{l,-m}=(-1)^{m}\mathbf {Y} _{lm}^{*}\qquad \mathbf {\Psi } _{l,-m}=(-1)^{m}\mathbf {\Psi } _{lm}^{*}\qquad \mathbf {\Phi } _{l,-m}=(-1)^{m}\mathbf {\Phi } _{lm}^{*}}
星号 * 代表共轭函数 。
正交性
三种向量球谐函数彼此两两正交
Y
l
m
⋅
Ψ
l
m
=
0
Y
l
m
⋅
Φ
l
m
=
0
Ψ
l
m
⋅
Φ
l
m
=
0
{\displaystyle \mathbf {Y} _{lm}\cdot \mathbf {\Psi } _{lm}=0\qquad \mathbf {Y} _{lm}\cdot \mathbf {\Phi } _{lm}=0\qquad \mathbf {\Psi } _{lm}\cdot \mathbf {\Phi } _{lm}=0}
另外同种类的球谐函数的内积为:
∫
Y
l
m
⋅
Y
l
′
m
′
∗
d
Ω
=
δ
l
l
′
δ
m
m
′
{\displaystyle \int \mathbf {Y} _{lm}\cdot \mathbf {Y} _{l'm'}^{*}\,\mathrm {d} \Omega =\delta _{ll'}\delta _{mm'}}
∫
Ψ
l
m
⋅
Ψ
l
′
m
′
∗
d
Ω
=
l
(
l
+
1
)
δ
l
l
′
δ
m
m
′
{\displaystyle \int \mathbf {\Psi } _{lm}\cdot \mathbf {\Psi } _{l'm'}^{*}\,\mathrm {d} \Omega =l(l+1)\delta _{ll'}\delta _{mm'}}
∫
Φ
l
m
⋅
Φ
l
′
m
′
∗
d
Ω
=
l
(
l
+
1
)
δ
l
l
′
δ
m
m
′
{\displaystyle \int \mathbf {\Phi } _{lm}\cdot \mathbf {\Phi } _{l'm'}^{*}\,\mathrm {d} \Omega =l(l+1)\delta _{ll'}\delta _{mm'}}
标量场的梯度
对一个标量场
ϕ
{\displaystyle \phi }
,若其多极展开 可表示为:
ϕ
=
∑
l
=
0
∞
∑
m
=
−
l
l
ϕ
l
m
(
r
)
Y
l
m
(
θ
,
ϕ
)
{\displaystyle \phi =\sum _{l=0}^{\infty }\sum _{m=-l}^{l}\phi _{lm}(r)Y_{lm}(\theta ,\phi )}
则其梯度 可以向量球谐函数表示为:
∇
ϕ
=
∑
l
=
0
∞
∑
m
=
−
l
l
(
d
ϕ
l
m
d
r
Y
l
m
+
ϕ
l
m
r
Ψ
l
m
)
{\displaystyle \nabla \phi =\sum _{l=0}^{\infty }\sum _{m=-l}^{l}\left({\frac {\mathrm {d} \phi _{lm}}{\mathrm {d} r}}\mathbf {Y} _{lm}+{\frac {\phi _{lm}}{r}}\mathbf {\Psi } _{lm}\right)}
散度
三种向量球谐函数之散度 分别为:
∇
⋅
(
f
(
r
)
Y
l
m
)
=
(
d
f
d
r
+
2
r
f
)
Y
l
m
{\displaystyle \nabla \cdot \left(f(r)\mathbf {Y} _{lm}\right)=\left({\frac {\mathrm {d} f}{\mathrm {d} r}}+{\frac {2}{r}}f\right)Y_{lm}}
∇
⋅
(
f
(
r
)
Ψ
l
m
)
=
−
l
(
l
+
1
)
r
f
Y
l
m
{\displaystyle \nabla \cdot \left(f(r)\mathbf {\Psi } _{lm}\right)=-{\frac {l(l+1)}{r}}fY_{lm}}
∇
⋅
(
f
(
r
)
Φ
l
m
)
=
0
{\displaystyle \nabla \cdot \left(f(r)\mathbf {\Phi } _{lm}\right)=0}
其中
f
(
r
)
{\textstyle f(r)}
为球谐函数之径向分布,
Y
l
m
{\displaystyle Y_{lm}}
为球谐函数 。
旋度
三种向量球谐函数之旋度 分别为:
∇
×
(
f
(
r
)
Y
l
m
)
=
−
1
r
f
Φ
l
m
{\displaystyle \nabla \times \left(f(r)\mathbf {Y} _{lm}\right)=-{\frac {1}{r}}f\mathbf {\Phi } _{lm}}
∇
×
(
f
(
r
)
Ψ
l
m
)
=
(
d
f
d
r
+
1
r
f
)
Φ
l
m
{\displaystyle \nabla \times \left(f(r)\mathbf {\Psi } _{lm}\right)=\left({\frac {\mathrm {d} f}{\mathrm {d} r}}+{\frac {1}{r}}f\right)\mathbf {\Phi } _{lm}}
∇
×
(
f
(
r
)
Φ
l
m
)
=
−
l
(
l
+
1
)
r
f
Y
l
m
−
(
d
f
d
r
+
1
r
f
)
Ψ
l
m
{\displaystyle \nabla \times \left(f(r)\mathbf {\Phi } _{lm}\right)=-{\frac {l(l+1)}{r}}f\mathbf {Y} _{lm}-\left({\frac {\mathrm {d} f}{\mathrm {d} r}}+{\frac {1}{r}}f\right)\mathbf {\Psi } _{lm}}
其中
f
(
r
)
{\textstyle f(r)}
为球谐函数之径向分布
运用
电动力学
在没有源的空间中,马克士威方程组 可以被简化为[来源请求]
▽
2
E
+
k
m
2
E
=
0
{\displaystyle \triangledown ^{2}\mathbf {E} +k_{m}^{2}\mathbf {E} =0}
▽
2
H
+
k
m
2
H
=
0
{\displaystyle \triangledown ^{2}\mathbf {H} +k_{m}^{2}\mathbf {H} =0}
此处
E
{\displaystyle \mathbf {E} }
是电场 ,
H
{\displaystyle \mathbf {H} }
是H场 ,
k
m
{\displaystyle k_{m}}
是介质中的波数 。
因为向量球谐函数可以很正确的描述简化后的电磁场方程式,所以在电动力学中,向量球谐函数获得广泛的利用。常见的应用如多极辐射或米氏散射 等。
参见
参考资料
^ R.G. Barrera, G.A. Estévez and J. Giraldo, Vector spherical harmonics and their application to magnetostatics , Eur. J. Phys. 6 287-294 (1985)
^ B. Carrascal, G.A. Estevez, P. Lee and V. Lorenzo Vector spherical harmonics and their application to classical electrodynamics , Eur. J. Phys., 12 , 184-191 (1991)
^ E. L. Hill, The theory of Vector Spherical Harmonics , Am. J. Phys. 22 , 211-214 (1954)
^ E. J. Weinberg, Monopole vector spherical harmonics , Phys. Rev. D. 49 , 1086-1092 (1994)
^ P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II , New York: McGraw-Hill, 1898-1901 (1953)
外部链接