首页
随机
附近
登录
设置
资助维基百科
关于维基百科
免责声明
搜索
布尔代数恒等式
语言
监视
此条目
需要扩充。
(
2012年10月25日
)
请协助
改善这篇条目
,更进一步的信息可能会在
讨论页
或
扩充请求
中找到。请在扩充条目后将此模板移除。
在
数学
抽象代数
布尔代数
中,有许多
布尔代数恒等式
。
目录
1
符号
2
基本恒等式
3
恒等式
4
布尔函数恒等式
4.1
基本乘法
4.2
基本加法
4.3
分离表示法
符号
基本恒等式
a
∨
(
b
∨
c
)
=
(
a
∨
b
)
∨
c
{\displaystyle a\lor (b\lor c)=(a\lor b)\lor c}
a
∧
(
b
∧
c
)
=
(
a
∧
b
)
∧
c
{\displaystyle a\land (b\land c)=(a\land b)\land c}
结合律
a
∨
b
=
b
∨
a
{\displaystyle a\lor b=b\lor a}
a
∧
b
=
b
∧
a
{\displaystyle a\land b=b\land a}
交换律
a
∨
(
a
∧
b
)
=
a
{\displaystyle a\lor (a\land b)=a}
a
∧
(
a
∨
b
)
=
a
{\displaystyle a\land (a\lor b)=a}
吸收律
a
∨
(
b
∧
c
)
=
(
a
∨
b
)
∧
(
a
∨
c
)
{\displaystyle a\lor (b\land c)=(a\lor b)\land (a\lor c)}
a
∧
(
b
∨
c
)
=
(
a
∧
b
)
∨
(
a
∧
c
)
{\displaystyle a\land (b\lor c)=(a\land b)\lor (a\land c)}
分配律
a
∨
¬
a
=
1
{\displaystyle a\lor \lnot a=1}
a
∧
¬
a
=
0
{\displaystyle a\land \lnot a=0}
互补律
a
∨
a
=
a
{\displaystyle a\lor a=a}
a
∧
a
=
a
{\displaystyle a\land a=a}
幂等律
a
∨
0
=
a
{\displaystyle a\lor 0=a}
a
∧
1
=
a
{\displaystyle a\land 1=a}
有界律
a
∨
1
=
1
{\displaystyle a\lor 1=1}
a
∧
0
=
0
{\displaystyle a\land 0=0}
¬
0
=
1
{\displaystyle \lnot 0=1}
¬
1
=
0
{\displaystyle \lnot 1=0}
0和1是互补的
¬
(
a
∨
b
)
=
¬
a
∧
¬
b
{\displaystyle \lnot (a\lor b)=\lnot a\land \lnot b}
¬
(
a
∧
b
)
=
¬
a
∨
¬
b
{\displaystyle \lnot (a\land b)=\lnot a\lor \lnot b}
德·摩根定律
¬
¬
a
=
a
{\displaystyle \lnot \lnot a=a}
对合律
恒等式
a
⇒
b
=
¬
a
∨
b
{\displaystyle a\Rightarrow b=\lnot a\lor b}
a
⇔
b
=
¬
a
∨
b
{\displaystyle a\Leftrightarrow b=\lnot a\lor b}
a
⊕
b
=
¬
a
⋅
b
∨
a
⋅
¬
b
{\displaystyle a\oplus b=\lnot a\cdot b\lor a\cdot \lnot b}
a
⊕
1
=
¬
a
{\displaystyle a\oplus 1=\lnot a}
布尔函数恒等式
x
i
σ
i
=
{
x
i
,
σ
i
=
1
,
¬
x
i
,
σ
i
=
0
,
x
i
∈
{
0
,
1
}
{\displaystyle x_{i}^{\sigma _{i}}={\begin{cases}x_{i}\;,\sigma _{i}=1\;,\\\lnot x_{i}\;,\sigma _{i}=0\;,\end{cases}}x_{i}\!\in \{0,1\}}
基本乘法
基本加法
分离表示法