卡布列克常数

卡布列克常数(英语:Kaprekar's constant),又称卡布列克常式(英语:Kaprekar's routine)、卡普雷卡尔常数卡普雷卡尔常式黑洞数,是指一种专指四位数的特定函数关系,在某排列顺序后,其演算式最后都会对应到6174。因此又名:6174问题、数字固定点、数字黑洞等...

关于黑洞数

黑洞数是指于四位数中,只要数字不完全相同,将数字由大到小的排列减去由小到大的排列,经有限操作后,总会得到某一个或一些数的数[1]。假设一开始选定的数字为  =f( ), =f( ),..., =f( ) 用同样的规则继续算下去,最后的结果一定是6174[1]。 比如说一开始选定9891,则f(9891)=9981-1899=8082,f(8082)=8820-0288=8532,f(8532)=8532-2358=6174,f(6174)=7641-1467=6174~
其他的四位数经过这样一系列的运算后,在七步之内都会对应到6174。这种现象类似黑洞(进去后就出不来了),故称为黑洞数[1]

历史

1955年[2],由卡普耶卡英语D. R. Kaprekar(D.R.Kaprekar)所提出,前苏联作家高基莫夫,在其所著数学的敏感一书,曾将其列为“没有揭开的秘密”。目前,这个问题已获解决。解决的方式在于“任意整数之固定点及k次循环之搜寻”。

其它位数的状况

其实并非只有四位数有这样的状况,三位数也有一数495,任何三位数经过这样的运算都会对应到495。其它位数就没有像三位数及四位数这样单纯的状况,会对应到不只一种结果,或是进入数字循环(即数个数循环对应)。
2位数的状况:没有黑洞,只有1个5成员的循环

09 81 63 27 45 09

5位数的状况:没有黑洞,有3个循环

71973 83952 74943 62964 71973
82962 75933 63954 61974 82962
53955 59994 53955

6位数的状况:有2个黑洞631764、549945,还有1个7个成员的循环

420876 851742 750843 840852 860832 862632 642654 420876

7位数的状况:没有黑洞,只有1个8成员的循环

7509843 9529641 8719722 8649432 7519743 8429652 7619733 8439552 7509843

8位数的状况:有2个黑洞63317664、97508421,还有2个循环

86526432 64308654 83208762 86526432
86308632 86326632 64326654 43208766 85317642 75308643 84308652 86308632

9位数的状况:有2个黑洞554999445、864197532,还有1个14个成员的循环

883098612 976494321 874197522 865296432 763197633 844296552 762098733 964395531 863098632 965296431 873197622 865395432 753098643 954197541 883098612

10位数的状况:有3个黑洞6333176664、9753086421、9975084201,还有5个循环

8653266432 6433086654 8332087662 8653266432
6431088654 8732087622 8655264432 6431088654
6543086544 8321088762 8765264322 6543086544
8633086632 8633266632 6433266654 4332087666 8533176642 7533086643 8433086652 8633086632
9775084221 9755084421 9751088421 9775084221

参考资料

  1. ^ 1.0 1.1 1.2 數學黑洞的魅力:6174到底憑什麼讓你癡迷. BBC. 2019-12-14 [2022-08-08]. (原始内容存档于2022-10-08) (中文(繁体)). 
  2. ^ 1949年: Kaprekar, D. R. (1949). "Another Solitaire Game". Scripta Mathematica 15: 244–245.

相关条目