向量空间

向量空间是一群可缩放相加的数学实体(如实数甚至是函数)所构成的特殊集合,其特殊之处在于缩放和相加后仍属于这个集合。这些数学实体被称为向量,而向量空间正是线性代数的主要研究对象。

线性代数
向量 · 向量空间 · 基底  · 行列式  · 矩阵
向量空间是可以缩放和相加的(叫做向量的)对象的集合

正式定义

给定   和某集合   ,它们具有了以下两种运算函数):[1]

  • 向量加法   (其中   惯例上简记为  
  • 标量乘法   (其中   惯例上简记为   甚至是  

且这两种运算满足:(特别注意      是本身具有的加法和乘法)

名称 前提条件 内容
向量加法 单位元逆元素 存在   的元素   对所有    
且存在   使得  
结合律 对所有    
交换律 对所有    
标量乘法 单位元 对所有     乘法单位元,则  
对向量加法的分配律 对所有   和所有    
对域加法的分配律 对所有   和所有    
与域乘法  

这样称 “   为定义在   上的向量空间”,而   里的元素   被称为向量;域   里的元素   被称为标量。这样域   就是囊括所有标量的集合,所以为了解说方便,有时会将   昵称为标量域或是标量母空间。在不跟域的加法混淆的情况下,向量加法   也可以简写成  

前四个条件规定  交换群。上述的完整定义也可以抽象地概述成“   是个域,且   是一个  ”。

基本性质

以下定理都沿用正式定义一节的符号与前提条件。

定理 (1) — 向量加法的单位元是唯一的。

以上的定理事实上继承自群的单位元唯一性。这样的话,可以仿造群的习惯以记号   代表“向量加法   的唯一单位元”,并称之为  零向量

在不跟标量的加法单位元   混淆的情况下,零向量   也可以简写成  

定理 (2) — 任意向量的向量加法逆元素是唯一的。

以上的定理事实上继承自群的逆元唯一性,这样的话,可以仿造群的习惯以   代表“向量   在向量加法   下的唯一逆元素”,甚至可以把   简记为   ,并昵称为向量减法。在不跟标量的加法混淆的情况下,   也可记为    也可记为  

定理 (3) — 对所有的纯量   都有   。(零向量的伸缩还是零向量)

证明

考虑到标量乘法对向量加法的分配律零向量的性质会有

 

那取向量    的向量加法逆元素,配上向量加法的结合律单位元的定义会有

 

故得证。 

定理 (4) — 对所有的向量   ,若纯量   是域加法的单位元,则  

证明

考虑到   自身的定义,还有标量乘法对域加法的分配律的话有

 

那取向量    的向量加法逆元素,配上向量加法的结合律单位元的定义会有

 

故得证。 

定理 (5) — 对所有的向量   和标量   ,如果   ,则    ( 其中   是域加法的单位元)。

证明

  ,根据定理(3)本定理显然成立。下面只考虑   的状况。

假设存在向量   和标量   满足    ,但   。若以   表示域的乘法单位元,那根据其性质与和定义关于标量乘法单位元的部分会有

 

那再根据定义关于标量乘法与域乘法的部分,还有域乘法的交换律会有

 

那再套用定理(3)和前提假设会有

 

这跟前提假设是矛盾的,所以根据反证法德摩根定理,对所有向量   和所有标量   ,只有可能“    ”或“ ”,但这段叙述正好等价于定理想证明的,故得证。 

定理 (6) — 如果    的域加法逆元素,那对所有的向量    的向量加法逆元素必为  

证明

以下设纯量   是域加法的单位元

考虑到   自身的定义,还有标量乘法对域加法的分配律会有

 
 

然后考虑到前面的定理(4),就有

 
 

然后考虑到定理(2)保证的逆元素唯一性,就可以知道向量   的加法逆元素必为   

系理 — 如果   是域加法单位元   的域加法逆元素,那对所有的向量   ,其向量加法逆元素必为  

额外结构

研究向量空间很自然涉及一些额外结构。额外结构如下:

例子

对一般域FV记为F-向量空间。若F实数域,则V称为实数向量空间;若F复数域,则V称为复数向量空间;若F有限域,则V称为有限域向量空间

最简单的F-向量空间是F自身。只要定义向量加法为域中元素的加法,标量乘法为域中元素的乘法就可以了。例如当F是实数域时,可以验证对任意实数ab以及任意实数uvw,都有:

  1. u + (v + w) = (u + v) + w
  2. v + w = w + v
  3. 零元素存在:零元素0满足:对任何的向量元素vv + 0 = v
  4. 逆元素存在:对任何的向量元素v,它的相反数w = −v就满足v + w = 0
  5. 标量乘法对向量加法满足分配律a(v + w) = a v + a w.
  6. 向量乘法对标量加法满足分配律(a + b)v = a v + b v.
  7. 标量乘法与标量的域乘法相容:a(bv) =(ab)v
  8. 标量乘法有单位元中的乘法单位元,也就是实数“1”满足:对任意实数v1v = v

更为常见的例子是给定了直角坐标系的平面:平面上的每一点 都有一个坐标 ,并对应着一个向量 。所有普通意义上的平面向量组成了一个空间,记作ℝ²,因为每个向量都可以表示为两个实数构成的有序数组 。可以验证,对于普通意义上的向量加法和标量乘法,ℝ²满足向量空间的所有公理。实际上,向量空间是ℝ²的推广。

同样地,高维的欧几里得空间n也是向量空间的例子。其中的向量表示为 ,其中的 都是实数。定义向量的加法和标量乘法是:

 
 
 

可以验证这也是一个向量空间。

再考虑所有系数为实数的多项式的集合 。对于通常意义上的多项式加法和标量乘法, 也构成一个向量空间。更广泛地,所有从实数域射到实数域的连续函数的集合 也是向量空间,因为两个连续函数的和或差以及连续函数的若干倍都还是连续函数。

方程组与向量空间

向量空间的另一种例子是齐次线性方程组(常数项都是0的线性方程组)的解的集合。例如下面的方程组:

 
 

如果  都是解,那么可以验证它们的“和” 也是一组解,因为:

 
 

同样,将一组解乘以一个常数后,仍然会是一组解。可以验证这样定义的“向量加法”和“标量乘法”满足向量空间的公理,因此这个方程组的所有解组成了一个向量空间。

一般来说,当齐次线性方程组中未知数个数大于方程的个数时,方程组有无限多组解,并且这些解组成一个向量空间。

对于齐次线性微分方程,解的集合也构成向量空间。比如说下面的方程:

 

出于和上面类似的理由,方程的两个解  的和函数 也满足方程。可以验证,这个方程的所有解构成一个向量空间。

子空间基底

如果一个向量空间V的一个非空子集合W对于V的加法及标量乘法都封闭(也就是说任意W中的元素相加或者和标量相乘之后仍然在W之中),那么将W称为V线性子空间(简称子空间)。V的子空间中,最平凡的就是空间V自己,以及只包含0的子空间 

给出一个向量集合B,那么包含它的最小子空间就称为它的生成子空间,也称线性包络,记作span(B)。

给出一个向量集合B,若它的生成子空间就是向量空间V,则称BV的一个生成集。如果一个向量空间V拥有一个元素个数有限的生成集,那么就称V是一个有限维空间。

可以生成一个向量空间V线性独立子集,称为这个空间的。若V={0},约定唯一的基是空集。对非零向量空间V,基是V“最小”的生成集。向量空间的基是对向量空间的一种刻画。确定了向量空间的一组基B之后,空间内的每个向量都有唯一的方法表达成基中元素的线性组合。如果能够把基中元素按下标排列: ,那么空间中的每一个向量v便可以通过座标系统来呈现:

 

这种表示方式必然存在,而且是唯一的。也就是说,向量空间的基提供了一个坐标系。

可以证明,一个向量空间的所有基都拥有相同基数,称为该空间的维度。当V是一个有限维空间时,任何一组基中的元素个数都是定值,等于空间的维度。例如,各种实数向量空间:ℝ⁰, ℝ¹, ℝ², ℝ³,…, ℝ,…中, ℝn的维度就是n。在一个有限维的向量空间(维度是n)中,确定一组基 ,那么所有的向量都可以用n个标量来表示。比如说,如果某个向量v表示为:

 

那么v可以用数组 来表示。这种表示方式称为向量的坐标表示。按照这种表示方法,基中元素表示为:

 
 
 

可以证明,存在从任意一个n维的 -向量空间到空间 双射。这种关系称为同构。

线性映射

给定两个系数域都是F的向量空间V和W,定义由V到W的线性变换(或称线性映射)为所有从V射到W并且它保持向量加法和标量乘法的运算的函数f

 
 

所有线性变换的集合记为 ,这也是一个系数域为F的向量空间。在确定了V和W上各自的一组基之后, 中的线性变换可以通过矩阵来表示。

如果两个向量空间V和W之间的一个线性映射是一一映射,那么这个线性映射称为(线性)同构,表示两个空间构造相同的意思。如果在V和W之间存在同构,那么称这两个空间为同构的。如果向量空间V和W之间存在同构 ,那么其逆映射 也存在,并且对所有的 ,都有:

 

参考文献

  • 中国大百科全书
  • Howard Anton and Chris Rorres. Elementary Linear Algebra, Wiley, 9th edition, ISBN 0-471-66959-8.
  • Kenneth Hoffmann and Ray Kunze. Linear Algebra, Prentice Hall, ISBN 0-13-536797-2.
  • Seymour Lipschutz and Marc Lipson. Schaum's Outline of Linear Algebra, McGraw-Hill, 3rd edition, ISBN 0-07-136200-2.
  • Gregory H. Moore. The axiomatization of linear algebra: 1875-1940, Historia Mathematica 22 (1995), no. 3, 262-303.
  • Gilbert Strang. "Introduction to Linear Algebra, Third Edition", Wellesley-Cambridge Press, ISBN 0-9614088-9-8

参考资料

  1. ^ Roman 2005, ch. 1, p. 27

外部链接