工频
此条目需要补充更多来源。 (2016年11月13日) |
工频(mains frequency(英),utility frequency(美))是“电网工作频率”的简称,又称电源频率,指电网中交流电的频率,同一电网中的所有发电机、输配电设备和用户均使用这一频率的交流电。目前世界上大多数国家使用50Hz作为电网工作频率,但也有美国(包含领地)、部分亚洲国家和地区使用60Hz工频。
在第二次工业革命过程中,许多不同的频率和电压曾被使用过。由于建设电网的设备投资巨大,电网规格的标准化进展缓慢。尽管如此,21世纪以来,使用50 Hz工频的电网趋向于使用220–240伏电压;使用60 Hz工频的电网趋向于100–127 V供电。 两种频率目前在世界上同时使用(日本同时使用这两个频率),而且在技术上、两种频率没有优劣之分[1]。目前,没有在全世界范围内对电网频率进行标准化的动力。
除非特别注明可以同时在50 Hz和60 Hz工频上运行,电器不在设计的工频的电网上工作可能导致效率降低甚至安全隐患。有些日本出售的电器能够同时在50Hz和60Hz。若电器有电源转换器,将交流电转换为直流电后再提供电器使用,也不受工频频率的影响。
影响因素
在选择电网的工作频率时需要考虑许多因素[2]。包括照明设备、电动机、变压器、发电机和输电线路在内的设备的工作特性都与电网频率有关。这些因素相互影响,使得工频的选择具有相当的重要性:需要在尽量满足互相矛盾的性能要求的基础上进行妥协。
在19世纪晚期,电网的频率越高,越有利于照明设备工作和变压器节约材料;与此同时,电网频率越低,越有利于长距离传输线、电动机和旋转变流器的设计。在大功率发电设备成熟以前,电网工频的选择往往取决于该电网负载的类型。技术的进步最终扫清了弧光灯和电动机等不同类型负载使用同一频率的障碍;同时,统一的供电系统也更加经济,因为一天之中负载的变化更小。
照明设备
商业电网的第一批用电器是白炽灯和装有换向器的直流电机。这两种设备都能在直流下很好地工作,但直流电很难转换电压,且用电设备大多只能在额定电压下工作。
若白炽灯工作于低频电流之下,灯丝每半个周期冷却一次,产生显著的明暗变化;这种效应对弧光灯和后来的汞灯和荧光灯更明显。
旋转机械
换向器电机难以在高频交流电下工作,因为快速变换的电流被电机绕组的电感所阻挡。尽管装有换向器的交流电机在家用小型电器中被广泛使用,但它们的功率都小于1kW。感应电动机能在50Hz到60Hz很好地工作;但在1890年,由于缺乏低铁损的材料,较高的频率,如133Hz,是不适用于旋转机械的。
由于电机转速正比于交流电频率,反比与磁极对数;因此,标准转速与电网工频之间相互制约。因此,一旦交流电动机普及,为了适配设备,频率的标准化变得越来越重要。
如果发电机的磁极对数一定,使用低转速的往复式引擎驱动比使用高转速的汽轮机驱动产生的频率更低。如果原动机转速较低,为提供高频率而建造多磁极数发电机成本更高。同时,在低速下发电机更容易同步,进而更容易并网。早起用于提高转速的皮带传动在大功率(几千千瓦)下变得昂贵、低效而不可靠。到1906年,高转速的蒸汽轮机驱动发电机方案为高工频带来优势。稳定的转速也满足了旋转变流器换向器的工作需要[2]。
交流电机的同步转速N用每分钟转数(RPM)可以表示为:
其中f为交流电频率,单位为赫兹(Hz),P为磁极个数。
磁极个数 | RPM at 1331⁄3 Hz | RPM at 60 Hz | RPM at 50 Hz | RPM at 40 Hz | RPM at 25 Hz | RPM at 162⁄3 Hz |
---|---|---|---|---|---|---|
2 | 8,000 | 3,600 | 3,000 | 2,400 | 1,500 | 1,000 |
4 | 4,000 | 1,800 | 1,500 | 1,200 | 750 | 500 |
6 | 2,666.7 | 1,200 | 1,000 | 800 | 500 | 333.3 |
8 | 2,000 | 900 | 750 | 600 | 375 | 250 |
10 | 1,600 | 720 | 600 | 480 | 300 | 200 |
12 | 1,333.3 | 600 | 500 | 400 | 250 | 166.7 |
14 | 1142.9 | 514.3 | 428.6 | 342.8 | 214.3 | 142.9 |
16 | 1,000 | 450 | 375 | 300 | 187.5 | 125 |
18 | 888.9 | 400 | 3331⁄3 | 2662⁄3 | 1662⁄3 | 111.1 |
20 | 800 | 360 | 300 | 240 | 150 | 100 |
直流电并未完全被交流电取代,目前仍用于电气化铁路、电信和电化学等领域,一些长距离及水底的电力传输系统会采用高压直流输电。在半导体整流设备出现前,常用汞弧整流器、旋转变流器来进行整流。
中国工频历史
1928年7月16日,亚浦耳公司向上海社会局公用局呈文,呈请上海特别市政府转请中央主管机关,建议规定200伏和50赫兹为中国电压频率标准。1929年2月,国民政府建设委员会电气处分六个步骤开始制订中国电压频率标准。 国民政府建设委员会制订《电气事业电压周率标准规则》,经行政院核准,1930年9月12日以建设委员会会公布令第五十七号,“自中华民国二十年一月一日起施行”。1935年关东军要求满洲电气委员会统一频率,规定50周波为标准频率,废除直流、60赫兹、25赫兹各家发电厂。
1953年6月由中央人民政府政务院燃料工业部颁布《电力系统调度管理暂行条例》第97条规定:“电力系统的周率应连续不断地保持在五十周波的水平上。其差别不得大于±0.5(50.5-49.5)周波。”
日本电源频率历史
日本的交流电源的频率有两种,日本东部为50Hz、日本西部为60Hz,两者大致以糸鱼川静冈构造线为分界。日本是唯一拥有两种不同频率电网,并使用变频设施互联的国家。
明治时期受到美国的电流战争影响,在日本也引发相同的争论,当时东京电灯采用直流电,而大阪电灯采用交流电。但到了1887年,东京电灯决定改用交流输电,引进德国AEG公司制造的50Hz规格发电机,并在关东大地震之后所属地区内统一为50Hz交流电。但在关西,成立于1888年的大阪电灯从一开始就选择交流输电,引进美国奇异公司制造的60Hz规格发电机。以这两间公司为中心,各地的电力供应逐渐整合,形成了东西频率的差异。在二战结束后,也有重新统一日本全国输电频率的构想,但未能实现。
跨越东西两电网的东海道新干线全线采用25kV、60Hz的交流电;北陆新干线则存在50Hz及60Hz两种供电区间,列车可对应两种频率。
在2011年福岛第一核电厂事故后,日本政府陆续将多个核电厂停止运转,结果各地出现了电力短缺。有观点认为东西两方的电网未能互通,是造成电力短缺的原因之一。此后日本陆续建设变电站与高压输电线,让东西电网可以达到部分相互融通,现在未连接到全国电网的只有冲绳电力所属地区。
400 Hz
美国军用标准MIL-STD-704规定了400Hz、115/200V交流电为美军设备的标准频率,包含战斗机、太空设备、军舰和潜舰等,有别于美国民生用电标准的60Hz。
400Hz的变压器和马达比50/60Hz的变压器和马达更小、更轻,更适合安装在空间狭小的军用飞机和舰船。
噪音和干扰
交流供电的设备会以其使用的交流电源频率的倍数发出特有的声响。它通常是由马达和变压器铁芯叠片随磁场同步振动而产生的。这种声响也可能出现在音频系统中,其中放大器的电源滤波器或讯号屏蔽不足导致。
各国电源频率
使用60Hz的国家/地区
亚洲/大洋洲
北美洲
中美洲
南美洲
参考文献
引用
- ^ A.C. Monteith , C.F. Wagner (ed), Electrical Transmission and Distribution Reference Book 4th Edition, Westinghouse Electric Corporation 1950, page 6
- ^ 2.0 2.1 B. G. Lamme, The Technical Story of the Frequencies, Transactions AIEE January 1918, reprinted in the Baltimore Amateur Radio Club newsletter The Modulator January -March 2007
- ^ 门井龙太郎、电気の周波数と电圧(世界•日本) 电气学会杂志 1991年 111巻 12号 p.1011-1014, doi:10.11526/ieejjournal1888.111.1011
书目
- Furfari, F.A., The Evolution of Power-Line Frequencies 133+1⁄3 to 25 Hz, Industry Applications Magazine, IEEE, Sep/Oct 2000, Volume 6, Issue 5, Pages 12–14, ISSN 1077-2618.
- Rushmore, D.B., Frequency, AIEE Transactions, Volume 31, 1912, pages 955–983, and discussion on pages 974–978.
- Blalock, Thomas J., Electrification of a Major Steel Mill – Part II Development of the 25 Hz System, Industry Applications Magazine, IEEE, Sep/Oct 2005, Pages 9–12, ISSN 1077-2618.
来源
- ENTSO-E. Rate of Change of Frequency (ROCOF) withstand capability (PDF). European Network of Transmission System Operators for Electricity. 29 March 2017.
- Miller, Nicholas; Lew, Debra; Barnes, Steven. Advisory on Equipment Limits associated with High RoCoF. General Electric International, Inc. April 9, 2017.
- NERC. Balancing and Frequency Control (PDF). North American Electric Reliability Corporation. May 11, 2021.
- Bratton, Timothy Lee. On the load-frequency control problem (PDF) (MSc论文). Houston, Texas: Rice University. May 1971.