星震学
星震学(英语:Asteroseismology,来自古希腊文 ἀστήρ,astēr,恒星、σεισμός, seismos,振动、-λογία, -logia,研究。或称为stellar seismology[1][2])是借由分析恒星震动频谱研究恒星内部结构的学问。在恒星上不同的振动模式会有不同的穿透深度。天文学家利用多普勒效应观测天体的震动,研究天体的震动可以了解无法被直接观测到的天体内部结构,例如氦的丰度以及对流区的深度;其原理就像地震学家通过研究地震波来了解地球和其他行星[2]。
星震学是用来研究恒星内部结构的工具。振动频率可以提供震波来源和通过区域的物质密度。恒星光谱可以让天文学家分析恒星组成,因此光谱学和星震学结合可以得知恒星内部结构。星震学可以将恒星的光小幅变化成声波[3]。
振动
星震学家提出在恒星内的振动是因为热能转换为脉动的动能而引起。这个过程和任一种热机是类似的,热在高温振动相被吸收,并且在低温处释放。在恒星内最主要的机制是在某些恒星中净辐射能在表面层转换成脉动能。脉动的结果经常是假设在小规模脉动且孤立球对称状态下研究。在联星系统中,恒星潮汐力对于恒星振动也会有明显影响。星震学的一个应用是在中子星的研究。中子星内部结构无法被直接观测,但也许可以透过中子星震荡的研究来推论[来源请求]。
震波形式
在类太阳恒星中的震波可以分为三个不同形式[4]:
在类太阳恒星中,例如南门二,p-模式是最明显的状态,而g-模式只局限在内部的对流区。然而,在白矮星上只能观测到g-模式[5]。
太阳震动
日震学(Helioseismology 或 Solar seismology)与星震学密切相关,不过是专门研究太阳内的震波。太阳内的振动是被太阳外层的对流运动激发,而将相关知识应用到观测类太阳恒星振动就是星震学的范畴。
相关太空任务
有数个至今仍使用中的太空探测器其任务相当重要的一部分就是星震学:
- 恒星微变和振荡望远镜(Microvariability and Oscillations of STars telescope,MOST):加拿大太空局于2003年发射的太空望远镜,第一个致力于星震学的太空探测器。
- 对流旋转和行星横越任务:法国国家太空研究中心主导,欧洲太空总署参与的太阳系外行星搜寻与星震学太空望远镜,发射于2006年。
- 广角红外线探测器(Wide Field Infrared Explorer,WIRE):美国国家航空暨太空总署于1999年发射的红外线望远镜。该望远镜未正确入轨,现进行星震学研究。
- 太阳和太阳风层探测器:欧洲太空总署/美国国家航空暨太空总署于1995年发射的太阳探测器。
- 克卜勒太空望远镜:美国国家航空暨太空总署于2009年发射的搜寻太阳系外行星的太空望远镜。目前该望远镜已经对视野中超过一千颗恒星进行星震学研究,其中包含一颗被仔细研究的次巨星 KIC 11026764[7][8]。
红巨星与星震学
红巨星是类太阳恒星在核心的氢耗尽使氢核融合停止后的演化晚期状态。恒星的外层半径将膨胀到原来的200倍,并且核心收缩。然而,演化过程中有两个不同的步骤。第一个步骤是核融合会在核心以外的区域发生,但核心的氦不发生核反应;稍后核心温度将会高到足以引发氦融合反应。先前这两个阶段无法从恒星光谱中直接判断,并且演化过程的细节无法完全了解。克卜勒太空望远镜对相对距离较近的数百颗红巨星进行星震学观测[9],并且将红巨星区分为两个形式。氢外层核融合进行终的红巨星其g-模式振动周期大多是50秒,如果是核心氦融合进行中的则是100到300秒。以上是在角动量守恒的条件下假设红巨星膨胀的外层和收缩的内层将使核心自转速度增加,外层转速降低的状况下。星震学的研究结果显示核心的自转速度至少是外层的10倍以上[10]。更进一步的星震学观测可以协助了解恒星演化过程中一些不明之处。
参考资料
- ^ Ghosh, Pallab. Team records 'music' from stars. BBC News. 23 October 2008 [2008-10-24]. (原始内容存档于2021-03-24).
- ^ 2.0 2.1 2.2 Guenther, David. Solar and Stellar Seismology. Saint Mary's University. [2008-10-24]. (原始内容存档于2020-12-23).
- ^ Palmer, Jason. Exoplanet Kepler 37b is tiniest yet - smaller than Mercury. BBC News. 20 February 2013 [2013-02-20]. (原始内容存档于2018-04-21).
- ^ Unno W, Osaki Y, Ando H, Saio H, Shibahashi H. Nonradial Oscillations of Stars 2nd. Tokyo, Japan: University of Tokyo Press. 1989.
- ^ 5.0 5.1 Christensen-Dalsgaard, Jørgen. Chapter 1. Lecture Notes on Stellar Oscillations (PDF) 5th. June 2003: 3 [2008-10-24].[永久失效链接]
- ^ Christensen-Dalsgaard, Jørgen. Chapter 2. Lecture Notes on Stellar Oscillations (PDF) 5th. June 2003: 23 [2008-10-24].[永久失效链接]
- ^ Metcalfe, T. S.; et al. A Precise Asteroseismic Age and Radius for the Evolved Sun-like Star KIC 11026764. The Astrophysical Journal. 2010-10-25, 723 (2): 1583. Bibcode:2010ApJ...723.1583M. arXiv:1010.4329 . doi:10.1088/0004-637X/723/2/1583.
- ^ Graphics for 2010 Oct 26 webcast – Images from the Kepler Asteroseismology Science Consortium (KASC) webcast of 2010 Oct 26. NASA. 2010-10-26 [3 November 2010]. (原始内容存档于2013-02-25).
- ^ Bedding TR, Mosser B, Huber D, Montalbaan J; et al. Gravity modes as a way to distinguish between hydrogen- and helium-burning red giant stars. Nature. Mar 2011, 471 (7340): 608–611 [2013-05-16]. Bibcode:2011Natur.471..608B. PMID 21455175. arXiv:1103.5805 . doi:10.1038/nature09935. (原始内容存档于2017-11-10).
- ^ Beck, Paul G.; Montalban, Josefina; Kallinger, Thomas; De Ridder, Joris; et al. Fast core rotation in red-giant stars revealed by gravity-dominated mixed modes. Nature. Jan 2012, 481 (7379): 55–57 [2013-05-16]. Bibcode:2012Natur.481...55B. PMID 22158105. arXiv:1112.2825 . doi:10.1038/nature10612. (原始内容存档于2017-11-19).