未解决的物理学问题
維基媒體列表條目
有一些重要但尚未解决的物理问题。其中包括理论性的,即现时理论未能够给予观测到的物理现象或实验结果令人满意的解释;还有实验性的,即能够周密测试某先进理论或深入研究某物理现象的实验,不过现时现地很难建造或完成。
纯理论方面的问题
这里列出的基础理论问题或理论构想缺乏实验证明。在这些问题之间,可能有强烈的相互关联。例如,额外维度或超对称可能有办法解释级列问题。物理学者认为,完整无瑕的量子重力理论应该能够解释大多数列出的问题(除了稳定岛问题以外)。
量子重力、物理宇宙学、广义相对论
- 真空灾变
- 从航海家探测卫星测量到的数据所推断出的真空能量密度上限为1014 GeV/m3,而从量子场论估算出的零点能量密度却为10121 GeV/m3,两个数值竟然相差了107个数量级[1]。物理史上从未见到这么大的差距,很多物理学者认为这是当今物理理论的重大瑕疵。
- 量子重力
- 如何整合量子力学和广义相对论成为完整一致的理论(或许是一种崭新的量子场论)[2]?时空的基本本质是否是连续的,还是离散的?这完整一致的理论是否涉及由一种假定的重力子所传递的作用力,还是从时空离散结构衍生的产物(回圈量子重力理论的理论)?在超小尺度、超大尺度或其它极端案例,广义相对论的预测与量子重力理论有甚么差异[3]?
- 黑洞、黑洞资讯悖论、霍金辐射
- 理论预期的黑洞热辐射现象是否属实?此种辐射是否带有关于黑洞内部结构的资讯,如同规范-重力二元性所建议,还是不然,如同史蒂芬·霍金的原本计算?若为不然,则黑洞能够蒸发干净,注意到量子力学并没有给出摧毁资讯的机制,那么,储存于黑洞的资讯又会怎么样?是否黑洞蒸发到某一程度就会自动停止,只剩下残馀黑洞?根据无毛定理,黑洞只有三种属性:质量、电荷量、角动量;除此以外,没有任何内部结构。这定理是否正确?为何尚未找出探勘黑洞内部的方法?
- 宇宙暴胀
- 宇宙暴胀理论是否正确?若为正确,这段时期所发生事件的细节为何?这造成暴胀的假定暴胀场到底为何?假若暴胀在过去某一时间曾经发生,有否有可能藉著量子力学涨落的暴胀机制,继续自我维持暴胀,因此在宇宙某超远处,这暴胀仍旧正在进行中?
- 多重宇宙
- 是否有足够的物理理论基础来支持期待其它宇宙的存在,虽然这些宇宙从根本而言是无法观测到的?例如,量子力学的多世界是否存在?在这些宇宙里,在高能量状况,由于使用别种方式破坏物理力的明显对称,所造成的物理定律是否会迥然不同。使用人择原理来消解全局宇宙困境是否正确?
- 宇宙审查假说
- 黑洞内部有一个奇异点。通常在这奇异点的外围有一层事件视界,速度最快的光波也无法逃离到事件视界之外。裸奇异点是缺乏事件视界的奇异点。由于没有事件视界隔离,物理学者可以观测到裸奇异点的物理行为。但是,至今为止,物理学者尚未观测到裸奇异点的蛛丝马迹。物理学者怀疑,从实际物理的初始条件是否能形成裸奇异点?罗杰·彭罗斯提出的宇宙审查假说表明,这是不可能的事。但是,物理学者还不能证明这假设的任何版本为正确无误[4]。
- 时序保护猜想
- 在广义相对论的爱因斯坦场方程式的某些解答中,会出现有封闭类时曲线,即粒子移动于时空的世界线为封闭回路,从初始点移动经过一段路程后,又会返回初始点。封闭类时曲线意味著一种时间旅行,能够返回过去的时间旅行。史蒂芬·霍金的时序保护猜想表明,强烈地不允许任何除了微观尺度以外的时间旅行。结合广义相对论与量子力学在一起的量子重力理论,能否排除封闭类时曲线的可能性?
- 时间箭头
- 物理学在微观的层次几乎完全是时间对称的。这意味著,假设将时间流逝的方向倒转,则原本物理定律仍然会保持为正确。但是在巨观层次,时间存在著明显的流逝方向。时间箭头就是用于描述这种不对称的现象。由于时间演进和时间反演而产生的不同物理现象,它们给出的关于时间属性的资料为何?
- 根据CPT对称理论,从CP破坏的证实可以立即断言时间是无法反演的。因此,时间对称性不成立,时间箭头可以建立起来。但是,这方法并不是直接地,而是间接地证实时间对称性不成立。测量基本粒子的内禀电偶极矩实验可以更强烈、更直接地证实这性质。假设基本粒子拥有内禀电偶极矩,则宇称对称性和时间对称性都会被破坏。更详尽细节,请查阅基本粒子的电偶极矩。对于各种粒子的电偶极矩,现在最准确的实验测值为
- [5]、
- 定域性原理与非定域现象
- 定域性原理表明,物体只会被其紧邻周遭环境事物影响。1935年,阿尔伯特·爱因斯坦等发表EPR吊诡,认为量子力学的基础理论,因为违背了定域性原理,可能不完备。三十年之后,约翰·贝尔提出反驳,主张定域隐变数理论不能复制量子力学的所有预测。在量子力学里,是否会出现非定域现象?假设非定域现象存在,这是否只局限于贝尔不等式被违背所显露出的量子纠缠;资讯、能量或物质能否能以非定域方式的传播?在哪种状况可以观测到非定域现象?非定域现象的存在与否,对于时空的基本结构,有甚么含意?非定域现象与量子纠缠有甚么关联?如何藉著非定域现象来说明量子力学基础性质的正确诠释?
- 宇宙的终极命运
- 根据天文观测和宇宙学理论,可以对可观测宇宙未来的演化作出预言。宇宙最终是否走向热寂、大崩坠、大撕裂、大反弹,还是按照多重宇宙论的论述,可能存在很多各种各样的宇宙,新的宇宙可能正在诞生,同时老旧的宇宙可能正在湮灭,但整个平行宇宙永远不会完全终结?
高能物理学/粒子物理学
- 级列问题
- 为什么重力是那么的微弱?只有当质量在普朗克尺度时,大约为1019 GeV,超大于电弱尺度,246 GeV,电弱理论描述的物理行为所涉及的能量),重力才会显得强劲。为什么这尺度的相差会有如天壤之别?是甚么物理过程使得电弱尺度的物理量,例如希格斯粒子的质量,无法获得普朗克尺度数量级的量子修正?请问这是因为超对称、额外维度,还是人择的精细调节?
- 质子衰变与大统一理论
- 怎样能够将量子场论的三种不同的基本交互作用,即强交互作用、弱交互作用和电磁交互作用,统一成为单独一种交互作用?至今为止,一些常见的主流大统一模型为SO(10)模型、乔吉-格拉肖模型等等。由于这些模型预测的新粒子的质量为大统一尺度数量级,大大地超过碰撞实验的可能范围,所以,物理学者无法做实验直接观测到这些新粒子。因此,物理学者必需使用间接方法,例如,质子衰变实验、基本粒子电偶极矩实验、微中子属性实验、磁单极子侦测实验等等[9]。注意到质子为质量最轻的重子,质子是否为绝对的稳定?倘若不是,质子的半衰期为何?日本的超级神冈侦测器并没有确切地侦测到任何质子衰变事件。从实验得到的数据,质子的寿命被设定为超过1033年[10]。
- 第四代夸克与轻子
- 由于共同提出卡比博-小林-益川矩阵来解释CP破坏的现象,并且给出了标准模型会允许多达三代夸克与轻子存在的原因,小林诚与益川敏英因此荣获2008年诺贝尔物理学奖。这理论并没有限制最多只能有三代。那么,有否可能找到第四代夸克或轻子[11]?是否能够构想出解释不同代粒子之间质量差异的理论,一种关于汤川耦合的理论?
- 反物质/重子不对称性
- 在宇宙中,为什么侦测实验结果显示,物质比反物质多很多?大爆炸应该制造出同样数量的粒子与反粒子,而粒子会和反粒子湮灭产生光子。因此宇宙应该充满了光子,而不会有很多物质存在。但是,宇宙现在的状况并不是这样。在大霹雳发生之后,一定有某些物理定律不平等地作用于物质与反物质。请问这些物理定律为何?在最初宇宙是否有某些作用力存在,但是后来随著宇宙演化,这些作用力已消失无踪?
核子物理学
- 量子色动力学
- 强交互作用物质有哪些相态?在宇宙中,这些相态的角色为何?核子的内部结构为何?量子色动力学对于强交互作用物质的属性方面的预测为何?哪种机制主掌了夸克和胶子的变迁为π介子与核子?是甚么机制造成了量子色动力学的重要特色:夸克禁闭与渐近自由?怎样将量子色动力学与广义相对论合并为一个完整理论?
其它
- 万有理论
- 又称为“终极理论”,万有理论试图解释与联结所有已知的物理现象,并且预测在原则上可行的任何实验的结果。但是,构筑这理论所遇到最困难的问题是,怎样将广义相对论与量子力学统一为单一理论?
缺乏清楚科学解释的经验现象
物理宇宙学
- 宇宙学常数问题
- 根据广义相对论,宇宙真空里蕴藏的能量会产生引力场,真空能量密度 与宇宙学常数 之间的关系为 。怎样计算真空能量密度是物理学尚未解决的一个大问题。最简单算法总和所有已知量子场贡献出的零点能,但这理论结果超过天文观测值120个数量级,被惊叹为“物理史上最差劲的理论预测”!为什么从真空能量密度计算出的宇宙学常数,会与天文观测值相差这么大?这问题称为宇宙学常数问题。到底是甚么物理机制抵销这超大数值?解决这问题可能要用到量子引力理论。[16]:186-187
- 暗物质
- 无法用电磁辐射侦测,而是从作用于可见物质与背景辐射的重力效应连带推断出来的物质,称为暗物质。物理学者尚不清楚甚么是暗物质的基本成分[17]?是否与超对称有关?归因于暗物质的天文现象,实际上是否是重力的延伸?
- 暗能量
- 暗能量是一种充溢于整个空间的能量的假定形式。暗能量倾向于增加宇宙膨胀速度[18]。最近完成的关于超过20万座星系的调查,似乎确定了暗能量的存在[19]。但是,物理学者仍旧无法精确地描述与解释暗能量的物理性质。暗能量主要有两种模型:宇宙学常数模型与第五元素模型。每一种模型都有其强点与弱点,尚未有任何实验结果令人信服地显示哪一种模型为正确模型,也可能都不够正确。
- 宇宙巧合问题
- 为什么恰巧就在这时候,宇宙的暗能量密度与物质密度几乎等值?这问题称为“宇宙巧合问题”。
- 如右图所示,物质密度 与宇宙标度因子 的三次方成反比:
- ,
- 而暗能量密度 与宇宙标度因子的关系式为
- ;
- 其中, 是依暗能量的本质而定的常数,必需小于3。
- 假设暗能量是宇宙学常数或真空零点能,则 ,暗能量密度 为常数,那么,这种万年不遇的巧合实在令人费解。难道暗能量密度是某种纯量场,或许暗能量与物质会发生某种耦合,从而造成暗能量密度与物质密度几乎等值[20]?
- 宇宙微波背景辐射的各向异性的黄道定向
- 微波天空在距离一百三十亿光年以外的某些大型特征,似乎跟太阳系的运动与定向有所关联。这是否为系统误差、观测结果被定域效应污染,还是哥白尼原则未经解释的破坏[21]?
- 宇宙的形状
- 宇宙共动空间的3-流形,又称为“宇宙的形状”,是甚么样子?现时,天文学者仍旧不清楚宇宙的曲率与拓扑,天文学者只知道,以可观测尺度衡量,曲率接近于零。宇宙暴胀假设建议,宇宙的形状可能无法测量,但是,于2003年,尚皮耶·卢敏内等与其他研究团队建议,宇宙的形状可能为庞加莱同调球面[22]。经过威尔金森微波各向异性探测器三年观测得到的数据确认了这模型的一些预测[23],但是,这模型的正确性尚未得到广泛支持。
高能物理学/粒子物理学
- 电弱对称破缺
- 到底是甚么机制打破了电弱规范对称,从而赋予W及Z玻色子质量?是标准模型的简单希格斯机制吗,[14]还是根据艺彩理论的点子,是大自然用一种类似强作用力的新规范作用力来破坏了电弱规范对称?物理学者希望能够用大型强子对撞机做实验核对艺彩理论。
- 微中子质量
- 究竟是甚么机制赋予微中子质量?任何粒子,假若其反粒子就是自己,则称此粒子为马约拉那粒子。微中子是否为马约拉那粒子?如果微中子满足马约拉纳方程式,我们便有机会观察到不放出微中子的双重β衰变。有没有可能会是因为微中子的特殊属性,从而使得微中子无法与一个正常粒子发生碰撞而互相湮灭?目前有许多实验试图去验证微中子是否为马约拉纳粒子[24]。
- 微中子超光速异常
- OPERA (实验),是一个检验微中子振荡现象的实验。于2011年9月,欧洲核子研究组织(CERN)与OPERA共同宣布,从它们合作测量到的微中子飞行时间数据,它们发现缈中微子以超光速运动。请问这是做错实验获得的结果,还是狭义相对论的确切瑕疵?[25][26]2012年2月22日,科学新闻网页杂志Science Insider报告,从全球定位系统接收器到电脑之间的光纤缆线,由于与电脑的积体电路卡连接不良,造成了60奈秒延迟。将连接维修后,这问题不再发生。这实验失误似乎可以解释中微子的超光速异常。但是,仍旧必需做实验拿到更多数据来检验这假说。[27]
- 基本粒子的惯性质量与重力质量比率
- 根据广义相对论的等效原理,对于所有基本粒子,惯性质量与重力质量比率为1 [28]。但是,对于很多粒子,并没有任何实验确认这论点。特别而言,物理学者很想知道,具有某巨观质量的反物质,其重量为何?
- 质子自旋危机
- 质子是自旋为1/2的费米子,但是,于1988年,欧洲缈子共同研究团队发现,质子的三个主要价夸克只贡献出总自旋的20-30%。自旋的其它部分是甚么机制贡献出的,是由胶子,还是由持续不断地生成与湮灭中的海夸克对偶所贡献出的[29]?
- 强CP问题与轴子
- 为什么强交互作用对于宇称与电荷共轭charge conjugation运算具有不变性?1977年提出的皮塞-奎恩理论(Peccei–Quinn theory)是否为这问题的正确解答[31]?
天文学、天文物理学
- 吸积盘喷流
- 为什么环绕著某些像活跃星系核一类的星体的吸积盘,会沿著其旋转轴喷出相对论性喷流?天文学者认为这些喷流有很多用途,从除去正在形成的恒星的角动量,到将活跃星系核内部重新离子化。但是,天文学者仍旧不清楚吸积盘喷流的初始由来。
- 准周期性震荡
- 有些像白矮星、中子星、黑洞一类的致密星,其吸积盘的内部边缘在某频率附近会忽隐忽现地发射出X射线,这现象称为“准周期性震荡”。可以从星体的功率谱的峰点找到震荡痕迹。物理学者不知道为什么会出现准周期性震荡?为什么这些震荡的频率与中心物体的质量成正比?有时候,在功率谱会出现多个峰点。为甚么对于不同的星体,这些峰点的频率比率会不一样[32]。
- 日冕加热问题
- 为什么太阳的日冕(大气层)温度(1至3百万K)超高于表面温度(6000K)?对于这问题,过去几十年,物理学者提出了很多理论,但只有两个理论可能最为正确:波动加热理论与en磁重联理论magnetic reconnection theory[33]。磁重联理论的缺陷是,为什么观测到的磁重联效应比较理论预测快过很多数量级?美国太空总署的太阳侦测加级器任务预定于2015年启航,准备勘测太阳的日冕加热状况。
- 质量-速度色散关系可以用来精确地计算超大质量黑洞的质量。但是,物理学者不清楚促成这关系的物理原因为何[37]?
- 观测异常:
- 飞掠异常:为什么卫星飞掠过地球后的能量会与理论预测不同?这异常最先发现于1990年伽利略号探测器的飞掠过地球。通过仔细检查深空网路纪录的都卜勒数据,天文学者意外地发现66mHz频移,对应于速度在近地点增加了3.92mm/s。天文学者尚未能够给出满意答案。
- 超高能量宇宙射线
- 地球附近根本没有超高能量宇宙射线源,为何有一些宇宙射线会拥有不可能般高的能量?GZK极限是源自远处的宇宙射线所拥有能量的理论上限。超过GZK极限的宇宙射线会与宇宙微波背景辐射耦合,制造π介子。这程序会重复发生,直到宇宙射线的能量低于GZK极限为止。所以,应该不可能观测到任何源自远处的超高能量宇宙射线。但是,这些似从远处发射出的超高能量宇宙射线,并没有遵守GZK极限的规则,与宇宙微波背景辐射发生反应,而奇迹般地存活移动到地表附近,才被观测到,请问原因为何[14][17]?
- 土星自转周期
- 航海家1号与航海家2号分别于1981年及1982年飞越土星时测量得到无线电讯号周期为10 h 39 min。卡西尼太空船在2004年接近土星时,发现无线电的周期增加至10 h 45 m[38]。造成变化的原因仍不清楚,但这种变化被认为是由于无线电的来源可能移动到土星内部不同的纬度位置,从而改变了自转周期,而不是出自于土星本身自转周期上的变化。目前还没有方法可以直接测量土星核心的自转速率[39]。
- 磁星
- 到底是甚么机制形成磁星的磁场?
凝聚态物理学
- 湍流
- 能否设计出一个理论模型来解释紊流的物理行为和内部结构[14]?在甚么条件下,纳维-斯托克斯方程式有平滑解?这是克雷数学研究所于2000年设立的千禧年大奖难题中的一大难题。
近期已找到解答的问题
- 短时间伽玛射线爆发(2017年)
- 短时间伽玛射线爆发为时间短于2秒钟的伽玛射线爆发。2017年,科学家探测到重力波事件GW170817,并且在仅仅1.7秒之后又探测到短伽玛射线暴GRB 170817A。在详细分析后,科学家确定此次事件来自两颗中子星碰撞所产生的千新星。[45]
- 引力波(2016年)
- 激光干涉引力波天文台(LIGO)团队于2016年2月11日在华盛顿宣布从双黑洞合并首次直接探测引力波。[46]
- 先锋号异常(2012年)
- 先锋10号与先锋11号是美国太空总署分别于1972年与1973年发射的两艘太空船,现在已逃离太阳系。在距离太阳大约20天文单位之后,观测到的两艘太空船的加速度与预测发生差异,大约为(8.74 ± 1.33)× 10−10 m/s2。[17]物理学者现在认为这是因为先前未将热反冲力(thermal recoil force)的效应纳入计算[47][48]
- 长时间伽玛射线爆发(2003年)
- 从遥远的星系突然发生的超大能量爆炸,其所伴随的快闪伽玛射线,称为“伽玛射线爆发”,是宇宙最明亮的电磁事件,通常持续时间在0.01-1000秒。长时间伽玛射线爆发分类为时间久过于2秒钟的伽玛射线爆发,这种爆发与大质量星体的死亡有关,此种星体的死亡过程类似于超新星事件,常称为极超新星[49]。
- 太阳微中子问题(2002年)
- 这问题指的是测量到的太阳微中子通过地球的数量与理论计算有所差异。从对于微中子物理的研究结果,物理学者修改了粒子物理学的标准模型,提出微中子振荡的概念,要求微中子具有质量,可以在电中微子、μ中微子和τ中微子,这三种微中子之间相互变换。由于这些崭新理论的提出,这问题已得解答。
参见
参考文献
- ^ SM Dutra. Cavity Quantum Electronics. John Wiley & Sons. 2005: 63. ISBN 0471713473.
- ^ Alan Sokal, Don't Pull the String Yet on Superstring Theory, New York Times, 1996-07-22 [2011-05-09], (原始内容存档于2008-12-07)
- ^ Thiemann, Thomas. Lectures on Loop Quantum Gravity. Lecture Notes in Physics. 2003, 631: 41–135. arXiv:gr-qc/0210094 .
- ^ Joshi, Pankaj S., Do Naked Singularities Break the Rules of Physics?, Scientific American, January 2009 [2011-05-11], (原始内容存档于2012-05-25)
- ^ Baker, C. A.; et al., Improved Experimental Limit on the Electric Dipole Moment of the Neutron (PDF), Physical Review Letters, 2006, 97: 131801 [2011-05-12], doi:10.1103/PhysRevLett.97.131801, (原始内容 (PDF)存档于2011-03-22)
- ^ Lebedeb, Oleg;, Kazakov, D. I.; Gladyshev, Alexei V. , 编, Supersymmetry and Unificatiooon of Fundamental Interactions, Proceedings of the IX International Conference on Supersymmetry and Unification of Fundamental Interactions: Dubna, Russia, 11-17 June, 2001, World Scientific: 202ff, 2002, ISBN 9789810248055
- ^ Griffith, W. C.; et al., Improved Limit on the Permanent Electric Dipole Moment of 199Hg, Physical Review Letters, Mar 2009, 102, doi:10.1103/PhysRevLett.102.101601
- ^ 保罗·狄拉克, "Quantised Singularities in the Electromagnetic Field (页面存档备份,存于互联网档案馆)". Proceedings of the Royal Society A 133, 60 (1931).
- ^ Ross, G. Grand Unified Theories. Westview Press. 1984. ISBN 978-0-805-36968-7.
- ^ Proton decay, [2011-06-04], (原始内容存档于2011-07-18)
- ^ 陈凯风, 台灣大學高能物理實驗團隊在LHC, 物理双月刊, 2010年12月, 32 (6): 468–471 [2011-06-04], (原始内容存档于2015-06-05)
- ^ L. Stavsetra, et. al., Independent Verification of Element 114 Production in the 48Ca+242Pu Reaction, Physical Review Letters, Sep 2009, 103 (13): 132502 [2011-06-04], (原始内容存档于2010-09-22)
- ^ Yu. Ts. Oganessian; et al, Synthesis of a New Element with Atomic Number Z=117, Physical Review Letters, Apr 2010, 104 (14): 142502 [2011-06-04], (原始内容存档于2012-04-19)
- ^ 14.0 14.1 14.2 14.3 14.4 14.5 Baez, John C. Open Questions in Physics. Usenet Physics FAQ. University of California, Riverside. March 2006 [2011-03-07]. (原始内容存档于2011-06-04).
- ^ Arthur Jaffe and Edward Witten "Quantum Yang-Mills theory. (页面存档备份,存于互联网档案馆)" Official problem description
- ^ MP Hobson, GP Efstathiou & AN Lasenby. General Relativity: An introduction for physicists Reprint. Cambridge University Press. 2006. ISBN 9780521829519.
- ^ 17.0 17.1 17.2 Brooks, Michael. 13 Things That Do Not Make Sense. New Scientist. 2005-03-19 [2011-03-07]. Issue 2491. (原始内容存档于2011-02-25).
- ^ P. J. E. Peebles and Bharat Ratra. The cosmological constant and dark energy. Reviews of Modern Physics. 2003, 75 (2): 559–606. arXiv:astro-ph/0207347 . doi:10.1103/RevModPhys.75.559.
- ^ 存档副本 (PDF). [2011-06-04]. (原始内容存档 (PDF)于2012-03-17).
- ^ Steinardt, Paul, Cosmological Challenges For the 21st Century, Val Fitch et. al. (编), Critical problems in physics: proceedings of a conference celebrating the 250th anniversary of Princeton University, Princeton, New Jersey: Princeton University Press: pp. 138–140, 1997, ISBN 9780691057842 缺少或
|title=
为空 (帮助) - ^ CERN Courier "Does the motion of the solar system affect the microwave sky? (页面存档备份,存于互联网档案馆)"
- ^ Luminet, Jean-Pierre; Jeff Weeks, Alain Riazuelo, Roland Lehoucq, Jean-Phillipe Uzan. Dodecahedral space topology as an explanation for weak wide-angle temperature correlations in the cosmic microwave background. Nature (Nature). 2003-10-09, 425 (6958): 593–5. PMID 14534579. arXiv:astro-ph/0310253 . doi:10.1038/nature01944.
- ^ Roukema, Boudewijn; Zbigniew Buliński, Agnieszka Szaniewska, Nicolas E. Gaudin. A test of the Poincare dodecahedral space topology hypothesis with the WMAP CMB data. Astronomy and Astrophysics. 2008, 482: 747. arXiv:0801.0006 . doi:10.1051/0004-6361:20078777.
- ^ Franklin, A: Are there really neutrinos?: an evidential history, page 186. Westview Press, 2004.
- ^ OPERA experiment reports anomaly in flight time of neutrinos from CERN to Gran Sasso (新闻稿). CERN. 2011-09-23 [2011-09-24]. (原始内容存档于2011-09-24).
- ^ John Matson. Faster-Than-Light Neutrinos? Physics Luminaries Voice Doubts. Scientific American. 2011-09-26 [2011-10-09]. (原始内容存档于2011-10-10).
- ^ Cartlidge, E., Breaking news: Error undoes faster-than-light neutrino results, ScienceInsider (American Association for the Advancement of Science), 2012-02-22 [2012-02-22], (原始内容存档于2012-02-23)
- ^ Ciufolini & Wheeler, "Gravitation and Inertia" (Princeton University Press: Princeton, 1995) pp. 90-97
- ^ Polarized colliders may prove to be the key in mapping out proton spin structure. 欧洲核子研究组织. 2002-01-25 [2011-06-04]. (原始内容存档于2008-12-05).
- ^ T.-Y. Wu, W.-Y. Pauchy Hwang. Relativistic quantum mechanics and quantum fields. World Scientific. 1991: 321. ISBN 9810206089.
- ^ Roberto Peccei, R. D. Peccei, Helen Quinn, H. R. Quinn. CP Conservation in the Presence of Pseudoparticles. Physical Review Letters. 1977, 38: 1440. doi:10.1103/PhysRevLett.38.1440.
- ^ Cannizzo, J. RXTE Discovers Kilohertz Quasiperiodic Oscillations. NASA Goddard Space Flight Center. 2001-06-27 [2011-06-04]. (原始内容存档于2011-10-23).
- ^ Ulmshneider, Peter. Heating of Chromospheres and Coronae in Space Solar Physics, Proceedings, Orsay, France, edited by J.C. Vial, K. Bocchialini and P. Boumier. Springer. 1997: 77–106. ISBN 3-540-64307-9.
- ^ Jenniskens, P., Desert, X.; Desert, F.-X. A survey of diffuse interstellar bands (3800-8680 A) (PDF). Astron. Astrophys. Suppl. Ser. 1994, 106: 39–78 [2012-01-23]. Bibcode:1994A&AS..106...39J. (原始内容存档 (PDF)于2012-02-04).
- ^ 美国太空总署的弥漫星际带目录网页:Diffuse Interstellar Band Catalog. NASA. [2012-01-23]. (原始内容存档于2012-02-04).
- ^ Gultekin, K. et al. (2009), The M and M-L Relations in Galactic Bulges, and Determinations of Their Intrinsic Scatter (页面存档备份,存于互联网档案馆), Astrophysical Journal, 698, 198-221
- ^ Ferrarese, Laura; Merritt, David, A Fundamental Relation between Supermassive Black Holes and their Host Galaxies, The Astrophysical Journal, 2000, 539: L9–L12 [2011-06-04], arXiv:astro-ph/0006053 , doi:10.1086/312838, (原始内容存档于2014-06-27)
- ^ Scientists Find That Saturn's Rotation Period is a Puzzle. NASA. 2004-06-28 [2007-03-22]. (原始内容存档于2011-08-21).
- ^ The Variable Rotation Period of the Inner Region of Saturn's Plasma Disk. Science. 2007-03-22 [2007-04-24]. (原始内容存档于2007-08-28).
- ^ Kenneth Chang, The Nature of Glass Remains Anything but Clear, The New York Times, 2008-07-29 [2011-06-04], (原始内容存档于2015-06-11)
- ^ "The deepest and most interesting unsolved problem in solid state theory is probably the theory of the nature of glass and the glass transition." Philip Anderson, Through the Glass Lightly, Science, 1995, 267: 1615
- ^ 存档副本. [2011-06-04]. (原始内容存档于2011-06-05).
- ^ doi:10.1209/0295-5075/89/58001
- ^ A. Leggett. What DO we know about high Tc?. Nature Physics. 2006, 2 (3): 134. doi:10.1038/nphys254.
- ^ Cho, Adrian. Merging neutron stars generate gravitational waves and a celestial light show. Science. 16 October 2017 [16 October 2017]. (原始内容存档于30 October 2021).
- ^ Castelvecchi, Davide; Witze, Witze. Einstein's gravitational waves found at last. Nature News. 11 February 2016 [11 February 2016]. S2CID 182916902. doi:10.1038/nature.2016.19361. (原始内容存档于24 December 2018).
- ^ Slava G. Turyshev. Support for the Thermal Origin of the Pioneer Anomaly. Physical Review Letters. 2012, 108 (24) [2018-04-02]. doi:10.1103/physrevlett.108.241101.
- ^ Mystery Tug on Spacecraft Is Einstein’s ‘I Told You So’. The New York Times. [2012-12-18]. (原始内容存档于2014-05-08) (英语).
- ^ Woosley, S.E. and Bloom, J.S. The Supernova Gamma-Ray Burst Connection. Annual Review of Astronomy and Astrophysics. 2006, 44: 507–556. arXiv:astro-ph/0609142 . doi:10.1146/annurev.astro.43.072103.150558.
- ^ Universe 101, NASA, [2011-06-04], (原始内容存档于2013-01-02)
- ^ The MKI and the discovery of Quasars. Jodrell Bank Observatory. [2006-11-23]. (原始内容存档于2011-08-23).
- ^ Hubble Surveys the "Homes" of Quasars (页面存档备份,存于互联网档案馆) Hubblesite News Archive, 1996-35
外部链接
- (英文)科学杂志第125周年庆特别网页:125条问题,我们不知道甚么 (页面存档备份,存于互联网档案馆)?
- (英文)美国物理协会主持的每周物理新闻网页:最新物理新闻。
- (英文)关于未解决问题的网页:关于未解决的物理学问题、奖赏、研究的连结列表 (页面存档备份,存于互联网档案馆)。
- (英文)美国太空总署网页:根据我们想要达成的目标而想出的点子 (页面存档备份,存于互联网档案馆)。
- (英文)2004年史丹福直线加速器中心夏季学院网页:大自然最难的谜题 (页面存档备份,存于互联网档案馆)