在古典力学里,正则座标是相空间的一种座标。正则座标很自然的出现于哈密顿力学的研究。正如同哈密顿力学的被辛几何广义化,正则变换也被切触变换广义化。如此在古典力学里,正则座标的19世纪定义也被广义化,成为更抽象地以馀切丛为基础的20世纪定义。
在哈密顿力学里,正则座标 ( q , p ) {\displaystyle (\mathbf {q} ,\ \mathbf {p} )\,\!} 必须满足哈密顿方程式:
其中, H ( q , p , t ) {\displaystyle {\mathcal {H}}(\mathbf {q} ,\ \mathbf {p} ,\ t)\,\!} 是哈密顿量、 q = ( q 1 , q 2 , … , q N ) {\displaystyle \mathbf {q} =(q_{1},\ q_{2},\ \dots ,\ q_{N})\,\!} 是广义座标、 p = ( p 1 , p 2 , … , p N ) {\displaystyle \mathbf {p} =(p_{1},\ p_{2},\ \dots ,\ p_{N})\,\!} 是广义动量。
正则座标满足基本帕松括号关系:
正则座标可以用勒壤得转换从拉格朗日形式论的广义座标求得;也可以用正则变换从另外一组正则座标求得。