覆土作物

覆土作物(英语:cover crops)或覆盖作物是为了覆盖土壤而非为了收获而种植的植物。这类作物长成后,茎叶覆盖地面,具有防止土壤冲刷的功用。覆土作物耕翻土中后,亦可增加土壤养分而为绿肥作物。常见的有蚕豆野豌豆紫苜蓿等。

在农业中,覆盖作物是种植以覆盖土壤而不是为了收获目的的植物。覆盖作物管理著农业生态系统中的土壤侵蚀,土壤肥力,土壤质量,水,杂草,害虫,疾病,生物多样性和野生动植物,而农业生态系统是由人类管理和塑造的生态系统。收获经济作物后,覆盖作物可能是淡季作物。它们可能会越冬。[1]

水土流失

尽管覆盖作物可以在农业生态系统中同时发挥多种功能,但它们的种植通常只是为了防止水土流失。土壤侵蚀是一个可以不可挽回地降低农业生态系生产能力的过程。覆盖作物透过改善土壤结构和增加渗透、保护土壤表面、分散雨滴能量以及降低水在土壤表面的移动速度来减少土壤流失。[2]茂密的覆盖作物在接触土壤表面之前会物理地减慢降雨速度,防止土壤飞溅和侵蚀地表径流。[3]此外,庞大的覆盖作物根系网络有助于将土壤固定到位并增加土壤孔隙度,为大型土壤动物创造合适的栖息地。[4] 它使土壤在未来几年保持良好的肥沃状态。

土壤肥力管理

覆盖作物的主要用途之一是提高土壤肥力。这些类型的覆盖作物被称为“绿肥”。它们用于管理一系列土壤常量营养素微量营养素。在各种养分中,覆盖作物对氮管理的影响最受研究人员和农民的关注,因为氮通常是作物生产中最限制性的养分。

通常,绿肥作物会种植一段特定的时期,然后在完全成熟之前进行耕作,以提高土壤肥力和品质。留下的茎可以阻止土壤被侵蚀。

绿肥作物通常是豆科作物,这意味著它们是豌豆科豆科的一部分。这个科的独特之处在于它的所有物种都结荚,例如豆、扁豆、羽扇豆和苜蓿。豆科覆盖作物通常含氮量较高,通常可以提供作物生产所需的氮量。在传统农业中,这种氮通常以化肥的形式施用。在有机农业中,氮输入可以采取有机肥料、堆肥、覆盖作物种子和豆科覆盖作物固定的形式。[5]覆盖作物的这种品质称为肥料替代值。[6]

豆科覆盖作物的另一个独特品质是它们与豆科植物根瘤中的根瘤菌形成共生关系。羽扇豆是由土壤微生物慢生根瘤菌(Bradyrhizobium sp.) 结瘤的。 (羽扇豆)。慢生根瘤菌作为微共生体存在于地中海起源的其他豆科作物(银叶草、莲花、鸟草、金合欢、羽扇豆)。这些细菌透过生物固氮过程将大气中无法使用的氮气转化为生可使用的。一般来说,覆盖作物会增加土壤微生物活性,这对土壤中的氮肥利用率、目标作物的氮吸收和作物产量有正面影响。[5]

土壤品质管理

覆盖作物还可以透过随著时间的推移输入覆盖作物生物量来增加土壤有机质水平,从而改善土壤品质。土壤有机质的增加增强了土壤结构以及土壤的水和养分保持和缓冲能力。[7] 它还可以导致土壤碳截存增加,这已被作为有助于抵消大气二氧化碳水平上升的策略而得到推广。[8][9][10]

土壤品质得到管理,为农作物的生长创造最佳条件。影响土壤品质的主要因素是土壤盐碱化pH值微生物平衡和土壤污染的预防。值得注意的是,如果土壤品质得到适当的管理和维护,它将成为健康和富有成效的环境的基础。人们可以设计和管理一种作物,在相当长的时间内创造健康的环境。[11]

水管理

透过减少土壤侵蚀,覆盖作物通常还可以减少田地排水的速度和数量,这通常会对下游的水道和生态系统造成环境风险。[12]覆盖作物生物量充当降雨和土壤表面之间的物理屏障,使雨滴能够稳定地从土壤剖面上滴下来。此外,如上所述,覆盖作物根系生长导致土壤孔隙的形成,除了增强土壤大型动物栖息地之外,还为水提供了透过土壤剖面过滤的途径,而不是作为地表流从田地排出。随著水入渗的增加,土壤储水和含水层补给的潜力可以提高。[13]

就在覆盖作物被杀死之前(透过割草、耕作、滚压或使用除草剂等做法),它们含有大量水分。当覆盖作物融入土壤或留在土壤表面时,通常会增加土壤湿度。在农作物生产用水短缺的农业生态系统中,覆盖作物可以用作覆盖物,透过遮荫和冷却土壤表面来节约用水。这减少了土壤水分的蒸发,有助于保存土壤养分。[14]

杂草管理

在覆盖作物生长期间,厚覆盖作物林通常与杂草竞争良好,并且可以阻止大多数发芽的杂草种子完成其生命周期和繁殖。如果覆盖作物在生长终止后将其压平在土壤表面,而不是作为绿肥并入土壤中,它会形成几乎无法穿透的垫子。这大大降低了杂草种子的透光率,在许多情况下降低了杂草种子的发芽率。[15]此外,即使杂草种子发芽,在建立突破覆盖作物覆盖层所需的结构能力之前,它们也常常耗尽储存的生长能量。这通常被称为覆盖作物窒息效应。[16]

有些覆盖作物在杂草生长期间和死亡后都能抑制杂草。[17]在生长过程中,这些覆盖作物与杂草激烈竞争可用空间、光线和养分,死亡后,它们通过在土壤表面形成覆盖层来窒息下一次杂草的生长。[18]

疾病管理

就像覆盖作物的化感作用可以抑制杂草一样,它们也可以打破疾病周期并减少细菌和真菌疾病[19]以及寄生线虫的数量。[20][21]十字花科的物种,例如芥菜,已被广泛证明可以透过在其植物细胞组织中硫代葡萄糖苷化合物的降解过程中释放天然产生的有毒化学物质来抑制真菌疾病种群。[22]

参考

  1. ^ 冬季要注意大棚蔬菜肥害. 新华网. [2021-11-25]. (原始内容存档于2021-11-25). 
  2. ^ Panagos, Panos; Borrelli, Pasquale; Poesen, Jean; Ballabio, Cristiano; Lugato, Emanuele; Meusburger, Katrin; Montanarella, Luca; Alewell, Christine. The new assessment of soil loss by water erosion in Europe. Environmental Science & Policy. December 2015, 54: 438–447. Bibcode:2015ESPol..54..438P. doi:10.1016/j.envsci.2015.08.012  (英语). 
  3. ^ Römkens, M. J. M.; Prasad, S. N.; Whisler, F. D. Surface sealing and infiltration. Anderson, M. G.; Burt, T. P. (编). Process studies in hillslope hydrology. Chichester, United Kingdom: John Wiley and Sons, Ltd. 1990: 127–172. ISBN 0471927147. 
  4. ^ Tomlin, A. D.; Shipitalo, M. J.; Edwards, W. M.; Protz, R. Earthworms and their influence on soil structure and infiltration. Hendrix, P. F. (编). Earthworm Ecology and Biogeography in North America. Boca Raton, Florida: Lewis Publishers. 1995: 159–183. 
  5. ^ 5.0 5.1 White, Kathryn E.; Brennan, Eric B.; Cavigelli, Michel A.; Smith, Richard F. Riaz, Muhammad , 编. Winter cover crops increased nitrogen availability and efficient use during eight years of intensive organic vegetable production. PLOS ONE. 2022-04-28, 17 (4): e0267757. Bibcode:2022PLoSO..1767757W. ISSN 1932-6203. PMC 9049554 . PMID 35482753. doi:10.1371/journal.pone.0267757  (英语). 
  6. ^ Thiessen-Martens, J. R.; Entz, M. H.; Hoeppner, J. W. Legume cover crops with winter cereals in southern Manitoba: Fertilizer replacement values for oat. Canadian Journal of Plant Science. 2005, 85 (3): 645–648. doi:10.4141/p04-114 . 
  7. ^ Patrick, W. H.; Haddon, C. B.; Hendrix, J. A. The effects of longtime use of winter cover crops on certain physical properties of commerce loam. Soil Science Society of America Journal. 1957, 21 (4): 366–368. Bibcode:1957SSASJ..21..366P. doi:10.2136/sssaj1957.03615995002100040004x. 
  8. ^ Kuo, S.; Sainju, U. M.; Jellum, E. J. Winter cover crop effects on soil organic carbon and carbohydrate in soil. Soil Science Society of America Journal. 1997, 61 (1): 145–152. Bibcode:1997SSASJ..61..145K. doi:10.2136/sssaj1997.03615995006100010022x. 
  9. ^ Sainju, U. M.; Singh, B. P.; Whitehead, W. F. Long-term effects of tillage, cover crops, and nitrogen fertilization on organic carbon and nitrogen concentrations in sandy loam soils in Georgia, USA. Soil & Tillage Research. 2002, 63 (3–4): 167–179. Bibcode:2002STilR..63..167S. doi:10.1016/s0167-1987(01)00244-6. 
  10. ^ Lal, R. Offsetting global CO2 emissions by restoration of degraded soils and intensification of world agriculture and forestry. Land Degradation & Development. 2003, 14 (3): 309–322. Bibcode:2003LDeDe..14..309L. S2CID 129950927. doi:10.1002/ldr.562. 
  11. ^ Managing Soil Health: Concepts and Practices. extension.psu.edu. [2023-07-14]. (原始内容存档于2024-05-28) (英语). 
  12. ^ Dabney, S. M.; Delgado, J. A.; Reeves, D. W. Using winter cover crops to improve soil quality and water quality. Communications in Soil Science and Plant Analysis. 2001, 32 (7–8): 1221–1250. S2CID 55768619. doi:10.1081/css-100104110. 
  13. ^ Joyce, B. A.; Wallender, W. W.; Mitchell, J. P.; Huyck, L. M.; Temple, S. R.; Brostrom, P. N.; Hsiao, T. C. Infiltration and soil water storage under winter cover cropping in California's Sacramento Valley. Transactions of the ASAE. 2002, 45 (2): 315–326. doi:10.13031/2013.8526. 
  14. ^ Arlauskienė, Aušra; Šarūnaitė, Lina. Cover Crop Yield, Nutrient Storage and Release under Different Cropping Technologies in the Sustainable Agrosystems. Plants. 2023-08-16, 12 (16): 2966. ISSN 2223-7747. PMC 10457803 . PMID 37631177. doi:10.3390/plants12162966 . 
  15. ^ Teasdale, J. R. Interaction of light, soil moisture, and temperature with weed suppression by hairy vetch residue. Weed Science. 1993, 41: 46–51. S2CID 90672916. doi:10.1017/S0043174500057568. 
  16. ^ Kobayashi, Y.; Ito, M.; Suwanarak, K. Evaluation of smothering effect of four legume covers on Pennisetum polystachion ssp. setosum (Swartz) Brunken. Weed Biology and Management. 2003, 3 (4): 222–227. doi:10.1046/j.1444-6162.2003.00107.x. 
  17. ^ Blackshaw, R. E.; Moyer, J. R.; Doram, R. C.; Boswell, A. L. Yellow sweetclover, green manure, and its residues effectively suppress weeds during fallow. Weed Science. 2001, 49 (3): 406–413. S2CID 86040044. doi:10.1614/0043-1745(2001)049[0406:ysgmai]2.0.co;2. 
  18. ^ Gazoulis, Ioannis; Kanatas, Panagiotis; Antonopoulos, Nikolaos; Tataridas, Alexandros; Travlos, Ilias. Νarrow Row Spacing and Cover Crops to Suppress Weeds and Improve Sulla (Hedysarum coronarium L.) Biomass Production. Energies. 2022-10-10, 15 (19): 7425. ISSN 1996-1073. doi:10.3390/en15197425  (英语). 
  19. ^ Everts, K. L. Reduced fungicide applications and host resistance for managing three diseases in pumpkin grown on a no-till cover crop. Plant Dis. 2002, 86 (10): 1134–1141. PMID 30818508. doi:10.1094/pdis.2002.86.10.1134 . 
  20. ^ Potter, M. J.; Davies, K.; Rathjen, A. J. Suppressive impact of glucosinolates in Brassica vegetative tissues on root lesion nematode Pratylenchus neglectus. Journal of Chemical Ecology. 1998, 24: 67–80. S2CID 41429379. doi:10.1023/A:1022336812240. 
  21. ^ Vargas-Ayala, R.; Rodriguez-Kabana, R.; Morgan-Jones, G.; McInroy, J. A.; Kloepper, J. W. Shifts in soil microflora induced by velvetbean (Mucuna deeringiana) in cropping systems to control root-knot nematodes. Biological Control. 2000, 17 (1): 11–22. Bibcode:2000BiolC..17...11V. CiteSeerX 10.1.1.526.3937 . doi:10.1006/bcon.1999.0769. 
  22. ^ Lazzeri, L.; Manici, L. M. Allelopathic effect of glucosinolate-containing plant green manure on Pythium sp and total fungal population in soil. HortScience. 2001, 36 (7): 1283–1289. doi:10.21273/HORTSCI.36.7.1283 . 

进一步阅读

外部链接