对于三维空间中任意一参考点
Q
{\displaystyle Q}
与以此参考点为原点的直角坐标系
Q
x
y
z
{\displaystyle Qxyz}
,一个刚体的惯性张量
I
{\displaystyle \mathbf {I} \,\!}
是
I
=
[
I
x
x
I
x
y
I
x
z
I
y
x
I
y
y
I
y
z
I
z
x
I
z
y
I
z
z
]
{\displaystyle \mathbf {I} ={\begin{bmatrix}I_{xx}&I_{xy}&I_{xz}\\I_{yx}&I_{yy}&I_{yz}\\I_{zx}&I_{zy}&I_{zz}\end{bmatrix}}\,\!}
。(1)
这里,矩阵的对角元素
I
x
x
{\displaystyle I_{xx}\,\!}
、
I
y
y
{\displaystyle I_{yy}\,\!}
、
I
z
z
{\displaystyle I_{zz}\,\!}
分别为对于
x
{\displaystyle x}
-轴、
y
{\displaystyle y}
-轴、
z
{\displaystyle z}
-轴的转动惯量 。设定
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)\,\!}
为微小质量
d
m
{\displaystyle dm\,\!}
对于点
Q
{\displaystyle Q}
的相对位置。则这些转动惯量以方程式定义为
I
x
x
=
d
e
f
∫
(
y
2
+
z
2
)
d
m
{\displaystyle I_{xx}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (y^{2}+z^{2})\ dm\,\!}
,
I
y
y
=
d
e
f
∫
(
x
2
+
z
2
)
d
m
{\displaystyle I_{yy}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (x^{2}+z^{2})\ dm\,\!}
,(2)
I
z
z
=
d
e
f
∫
(
x
2
+
y
2
)
d
m
{\displaystyle I_{zz}\ {\stackrel {\mathrm {def} }{=}}\ \int \ (x^{2}+y^{2})\ dm\,\!}
。
矩阵的非对角元素,称为惯量积 ,以方程式定义为
I
x
y
=
I
y
x
=
d
e
f
−
∫
x
y
d
m
{\displaystyle I_{xy}=I_{yx}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ xy\ dm\,\!}
,
I
x
z
=
I
z
x
=
d
e
f
−
∫
x
z
d
m
{\displaystyle I_{xz}=I_{zx}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ xz\ dm\,\!}
,(3)
I
y
z
=
I
z
y
=
d
e
f
−
∫
y
z
d
m
{\displaystyle I_{yz}=I_{zy}\ {\stackrel {\mathrm {def} }{=}}\ -\int \ yz\ dm\,\!}
。
导引
图A
如图
A
{\displaystyle A}
,一个刚体对于质心
G
{\displaystyle G}
与以点
G
{\displaystyle G}
为原点的直角座标系
G
x
y
z
{\displaystyle Gxyz}
的角动量
L
G
{\displaystyle \mathbf {L} _{G}\,\!}
定义为
L
G
=
∫
r
×
v
d
m
{\displaystyle \mathbf {L} _{G}=\int \ \mathbf {r} \times \mathbf {v} \ dm\,\!}
。
这里,
r
{\displaystyle \mathbf {r} \,\!}
代表微小质量
d
m
{\displaystyle dm\,\!}
在
G
x
y
z
{\displaystyle Gxyz}
座标系的位置,
v
{\displaystyle \mathbf {v} \,\!}
代表微小质量的速度。因为速度是角速度
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
叉积位置,所以,
L
G
=
∫
r
×
(
ω
×
r
)
d
m
{\displaystyle \mathbf {L} _{G}=\int \ \mathbf {r} \times ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm\,\!}
。
计算
x
{\displaystyle x}
-轴分量,
L
G
x
=
∫
y
(
ω
×
r
)
z
−
z
(
ω
×
r
)
y
d
m
=
∫
y
ω
x
y
−
y
ω
y
x
+
z
ω
x
z
−
z
ω
z
x
d
m
=
∫
ω
x
(
y
2
+
z
2
)
−
ω
y
x
y
−
ω
z
x
z
d
m
=
ω
x
∫
(
y
2
+
z
2
)
d
m
−
ω
y
∫
x
y
d
m
−
ω
z
∫
x
z
d
m
.
{\displaystyle {\begin{aligned}L_{Gx}&=\int \ y({\boldsymbol {\omega }}\times \mathbf {r} )_{z}-z({\boldsymbol {\omega }}\times \mathbf {r} )_{y}\ dm\\&=\int \ y\omega _{x}y-y\omega _{y}x+z\omega _{x}z-z\omega _{z}x\ dm\\&=\int \ \omega _{x}(y^{2}+z^{2})-\omega _{y}xy-\omega _{z}xz\ dm\\&=\omega _{x}\int \ (y^{2}+z^{2})\ dm-\omega _{y}\int \ xy\ dm-\omega _{z}\int \ xz\ dm\ .\end{aligned}}\,\!}
相似地计算
y
{\displaystyle y}
-轴与
z
{\displaystyle z}
-轴分量,角动量为
L
G
x
=
ω
x
∫
(
y
2
+
z
2
)
d
m
−
ω
y
∫
x
y
d
m
−
ω
z
∫
x
z
d
m
{\displaystyle L_{Gx}=\omega _{x}\int \ (y^{2}+z^{2})\ dm-\omega _{y}\int \ xy\ dm-\omega _{z}\int \ xz\ dm\,\!}
,
L
G
y
=
−
ω
x
∫
x
y
d
m
+
ω
y
∫
(
x
2
+
z
2
)
d
m
−
ω
z
∫
y
z
d
m
{\displaystyle L_{Gy}=-\omega _{x}\int \ xy\ dm+\omega _{y}\int \ (x^{2}+z^{2})\ dm-\omega _{z}\int \ yz\ dm\,\!}
,
L
G
z
=
−
ω
x
∫
x
z
d
m
−
ω
y
∫
y
z
d
m
+
ω
z
∫
(
x
2
+
y
2
)
d
m
{\displaystyle L_{Gz}=-\omega _{x}\int \ xz\ dm-\omega _{y}\int \ yz\ dm+\omega _{z}\int \ (x^{2}+y^{2})\ dm\,\!}
。
如果,我们用方程式(1)设定对于质心
G
{\displaystyle G}
的惯性张量
I
G
{\displaystyle \mathbf {I} _{G}\,\!}
,让角速度
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
为
(
ω
x
,
ω
y
,
ω
z
)
{\displaystyle (\omega _{x}\;,\;\omega _{y}\;,\;\omega _{z})\,\!}
,那么,
L
G
=
I
G
ω
{\displaystyle \mathbf {L} _{G}=\mathbf {I} _{G}\ {\boldsymbol {\omega }}\,\!}
。(4)
平行轴定理
平行轴定理能够很简易的,从对于一个以质心为原点的座标系统的惯性张量,转换至另外一个平行的座标系统。假若已知刚体对于质心
G
{\displaystyle G}
的惯性张量
I
G
{\displaystyle \mathbf {I} _{G}\,\!}
,而质心
G
{\displaystyle G}
的位置是
(
x
¯
,
y
¯
,
z
¯
)
{\displaystyle ({\bar {x}},\ {\bar {y}},\ {\bar {z}})\,\!}
,则刚体对于原点
O
{\displaystyle O}
的惯性张量
I
{\displaystyle \mathbf {I} \,\!}
,依照平行轴定理,可以表述为
I
x
x
=
I
G
,
x
x
+
m
(
y
¯
2
+
z
¯
2
)
{\displaystyle I_{xx}=I_{G,xx}+m({\bar {y}}^{2}+{\bar {z}}^{2})\,\!}
,
I
y
y
=
I
G
,
y
y
+
m
(
x
¯
2
+
z
¯
2
)
{\displaystyle I_{yy}=I_{G,yy}+m({\bar {x}}^{2}+{\bar {z}}^{2})\,\!}
,(5)
I
z
z
=
I
G
,
z
z
+
m
(
x
¯
2
+
y
¯
2
)
{\displaystyle I_{zz}=I_{G,zz}+m({\bar {x}}^{2}+{\bar {y}}^{2})\,\!}
,
I
x
y
=
I
y
x
=
I
G
,
x
y
−
m
x
¯
y
¯
{\displaystyle I_{xy}=I_{yx}=I_{G,xy}-m{\bar {x}}{\bar {y}}\,\!}
,
I
x
z
=
I
z
x
=
I
G
,
x
z
−
m
x
¯
z
¯
{\displaystyle I_{xz}=I_{zx}=I_{G,xz}-m{\bar {x}}{\bar {z}}\,\!}
,(6)
I
y
z
=
I
z
y
=
I
G
,
y
z
−
m
y
¯
z
¯
{\displaystyle I_{yz}=I_{zy}=I_{G,yz}-m{\bar {y}}{\bar {z}}\,\!}
。
证明:
图B
a)参考图B,让
(
x
′
,
y
′
,
z
′
)
{\displaystyle (x\,',\ y\,',\ z\,')\,\!}
、
(
x
,
y
,
z
)
{\displaystyle (x,\ y,\ z)\,\!}
分别为微小质量
d
m
{\displaystyle dm\,\!}
对质心
G
{\displaystyle G}
与原点
O
{\displaystyle O}
的相对位置:
y
=
y
′
+
y
¯
{\displaystyle y=y\,'+{\bar {y}}\,\!}
,
z
=
z
′
+
z
¯
{\displaystyle z=z\,'+{\bar {z}}\,\!}
。
依照方程式(2),
I
G
,
x
x
=
∫
(
y
′
2
+
z
′
2
)
d
m
{\displaystyle I_{G,xx}=\int \ (y\,'\,^{2}+z\,'\,^{2})\ dm\,\!}
I
x
x
=
∫
(
y
2
+
z
2
)
d
m
{\displaystyle I_{xx}=\int \ (y^{2}+z^{2})\ dm\,\!}
。
所以,
I
x
x
=
∫
[
(
y
′
+
y
¯
)
2
+
(
z
′
+
z
¯
)
2
]
d
m
=
I
G
,
x
x
+
m
(
y
¯
2
+
z
¯
2
)
.
{\displaystyle {\begin{aligned}I_{xx}&=\int \ [(y\,'+{\bar {y}})^{2}+(z\,'+{\bar {z}})^{2}]\ dm\\&=I_{G,xx}+m({\bar {y}}^{2}+{\bar {z}}^{2})\ .\\\end{aligned}}\,\!}
相似地,可以求得
I
y
y
{\displaystyle I_{yy}\,\!}
、
I
z
z
{\displaystyle I_{zz}\,\!}
的方程式。
b)依照方程式(3),
I
G
,
x
y
=
−
∫
x
′
y
′
d
m
{\displaystyle I_{G,xy}=-\int \ x\,'y\,'\ dm\,\!}
。
I
x
y
=
−
∫
x
y
d
m
{\displaystyle I_{xy}=-\int \ xy\ dm\,\!}
。
因为
x
=
x
′
+
x
¯
{\displaystyle x=x\,'+{\bar {x}}\,\!}
,
y
=
y
′
+
y
¯
{\displaystyle y=y\,'+{\bar {y}}\,\!}
,所以
I
x
y
=
−
∫
(
x
′
+
x
¯
)
(
y
′
+
y
¯
)
d
m
=
I
G
,
x
y
−
m
x
¯
y
¯
.
{\displaystyle {\begin{aligned}I_{xy}&=-\int \ (x\,'+{\bar {x}})(y\,'+{\bar {y}})\ dm\\&=I_{G,xy}-m{\bar {x}}{\bar {y}}\ .\\\end{aligned}}\,\!}
相似地,可以求得对于点
O
{\displaystyle O}
的其他惯量积方程式。
对于任意轴的转动惯量
图C
参视图C,设定点
O
{\displaystyle O}
为直角座标系的原点,点
Q
{\displaystyle Q}
为三维空间里任意一点,
Q
{\displaystyle Q}
不等于
O
{\displaystyle O}
。思考一个刚体,对于
O
Q
{\displaystyle OQ}
-轴的转动惯量是
I
O
Q
=
∫
ρ
2
d
m
=
∫
|
η
×
r
|
2
d
m
{\displaystyle I_{OQ}\ =\int \ \rho ^{2}\ dm\ =\ \int \ \left|{\boldsymbol {\eta }}\times \mathbf {r} \right|^{2}\ dm\,\!}
。
这里,
ρ
{\displaystyle \rho \,\!}
是微小质量
d
m
{\displaystyle dm\,\!}
离
O
Q
{\displaystyle OQ}
-轴的垂直距离,
η
{\displaystyle {\boldsymbol {\eta }}\,\!}
是沿著
O
Q
{\displaystyle OQ}
-轴的单位向量 ,
r
=
(
x
,
y
,
z
)
{\displaystyle \mathbf {r} =(x,\ y,\ z)\,\!}
是微小质量
d
m
{\displaystyle dm\,\!}
的位置。
展开叉积,
I
O
Q
=
∫
[
(
η
y
z
−
η
z
y
)
2
+
(
η
x
z
−
η
z
x
)
2
+
(
η
x
y
−
η
y
x
)
2
]
d
m
{\displaystyle I_{OQ}=\int \ [(\eta _{y}z-\eta _{z}y)^{2}+(\eta _{x}z-\eta _{z}x)^{2}+(\eta _{x}y-\eta _{y}x)^{2}]\ dm\,\!}
。
稍微加以编排,
I
O
Q
=
η
x
2
∫
(
y
2
+
z
2
)
d
m
+
η
y
2
∫
(
x
2
+
z
2
)
d
m
+
η
z
2
∫
(
x
2
+
y
2
)
d
m
−
2
η
x
η
y
∫
x
y
d
m
−
2
η
x
η
z
∫
x
z
d
m
−
2
η
y
η
z
∫
y
z
d
m
.
{\displaystyle {\begin{aligned}I_{OQ}=&\eta _{x}^{2}\int \ (y^{2}+z^{2})\ dm+\eta _{y}^{2}\int \ (x^{2}+z^{2})\ dm+\eta _{z}^{2}\int \ (x^{2}+y^{2})\ dm\\&-2\eta _{x}\eta _{y}\int \ xy\ dm-2\eta _{x}\eta _{z}\int \ xz\ dm-2\eta _{y}\eta _{z}\int \ yz\ dm\ .\\\end{aligned}}\,\!}
特别注意,从方程式(2)、(3),这些积分项目,分别是刚体对于
x
{\displaystyle x}
-轴、
y
{\displaystyle y}
-轴、
z
{\displaystyle z}
-轴的转动惯量与惯量积。因此,
I
O
Q
=
η
x
2
I
x
x
+
η
y
2
I
y
y
+
η
z
2
I
z
z
+
2
η
x
η
y
I
x
y
+
2
η
x
η
z
I
x
z
+
2
η
y
η
z
I
y
z
{\displaystyle I_{OQ}=\eta _{x}^{2}I_{xx}+\eta _{y}^{2}I_{yy}+\eta _{z}^{2}I_{zz}+2\eta _{x}\eta _{y}I_{xy}+2\eta _{x}\eta _{z}I_{xz}+2\eta _{y}\eta _{z}I_{yz}\,\!}
。(7)
如果已经知道,刚体对于直角座标系的三个座标轴,
x
{\displaystyle x}
-轴、
y
{\displaystyle y}
-轴、
z
{\displaystyle z}
-轴的转动惯量。那么,对于
O
Q
{\displaystyle OQ}
-轴的转动惯量,可以用此方程式求得。
主转动惯量
因为惯性张量
I
{\displaystyle \mathbf {I} \,\!}
是个实值 的三阶对称矩阵 ,我们可以用对角线化,将惯量积变为零,使惯性张量成为一个对角矩阵 [ 2] 。我们可以证明得到的三个特征值 必为正实数,而且三个特征向量 必定互相正交 。
换另外一种方法,我们需要解析特征方程式
I
ω
=
λ
ω
{\displaystyle \mathbf {I} \ {\boldsymbol {\omega }}=\lambda \;{\boldsymbol {\omega }}\,\!}
。(8)
也就是以下行列式 等于零的三次方程式 :
det
(
I
−
[
1
0
0
0
1
0
0
0
1
]
λ
)
=
|
I
x
x
−
λ
I
x
y
I
x
z
I
y
x
I
y
y
−
λ
I
y
z
I
z
x
I
z
y
I
z
z
−
λ
|
=
0
{\displaystyle \det {(\mathbf {I} -\left[{\begin{matrix}1&0&0\\0&1&0\\0&0&1\end{matrix}}\right]\lambda )}={\begin{vmatrix}I_{xx}-\lambda &I_{xy}&I_{xz}\\I_{yx}&I_{yy}-\lambda &I_{yz}\\I_{zx}&I_{zy}&I_{zz}-\lambda \end{vmatrix}}\,\!=0}
。
这方程式的三个根
λ
1
{\displaystyle \lambda _{1}\,\!}
、
λ
2
{\displaystyle \lambda _{2}\,\!}
、
λ
3
{\displaystyle \lambda _{3}\,\!}
都是正实的特征值。将特征值代入方程式(8),再加上方向馀弦 方程式,
ω
x
2
+
ω
y
2
+
ω
z
2
=
1
{\displaystyle \omega _{x}^{2}+\omega _{y}^{2}+\omega _{z}^{2}=1\,\!}
,
我们可以求到特征向量
ω
^
1
{\displaystyle {\hat {\boldsymbol {\omega }}}_{1}\,\!}
、
ω
^
2
{\displaystyle {\hat {\boldsymbol {\omega }}}_{2}\,\!}
、
ω
^
3
{\displaystyle {\hat {\boldsymbol {\omega }}}_{3}\,\!}
。这些特征向量都是刚体的惯量主轴 ;而这些特征值则分别是刚体对于惯量主轴的主转动惯量 。
假设
x
{\displaystyle x}
-轴、
y
{\displaystyle y}
-轴、
z
{\displaystyle z}
-轴分别为一个刚体的惯量主轴,这刚体的主转动惯量分别为
I
x
{\displaystyle I_{x}\,\!}
、
I
y
{\displaystyle I_{y}\,\!}
、
I
z
{\displaystyle I_{z}\,\!}
,角速度是
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
。那么,角动量为
L
=
(
I
x
ω
x
,
I
y
ω
y
,
I
z
ω
z
)
{\displaystyle \mathbf {L} =(I_{x}\omega _{x}\;,\;I_{y}\omega _{y}\;,\;I_{z}\omega _{z})\,\!}
。
动能
刚体的动能
K
{\displaystyle K\,\!}
可以定义为
K
=
1
2
m
v
¯
2
+
1
2
∫
v
2
d
m
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}\int \ v^{2}\ dm\,\!}
,
这里,
v
¯
{\displaystyle {\bar {v}}\,\!}
是刚体质心的速度,
v
{\displaystyle v\,\!}
是微小质量
d
m
{\displaystyle dm\,\!}
相对于质心的速度。在方程式里,等号右边第一个项目是刚体平移运动 的动能,第二个项目是刚体旋转运动 的动能
K
′
{\displaystyle K\,\!'\,\!}
。由于这旋转运动是绕著质心转动的,
K
′
=
1
2
∫
(
ω
×
r
)
⋅
(
ω
×
r
)
d
m
{\displaystyle K\,\!'={\frac {1}{2}}\int \ ({\boldsymbol {\omega }}\times \mathbf {r} )\cdot ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm\,\!}
。
这里,
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
是微小质量
d
m
{\displaystyle dm\,\!}
绕著质心的角速度,
r
{\displaystyle \mathbf {r} \,\!}
是
d
m
{\displaystyle dm\,\!}
对于质心的相对位置。
应用向量恒等式 ,可以得到
K
′
=
1
2
ω
⋅
∫
r
×
(
ω
×
r
)
d
m
=
1
2
ω
⋅
L
{\displaystyle K\,\!'={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \int \ \mathbf {r} \times ({\boldsymbol {\omega }}\times \mathbf {r} )\ dm={\frac {1}{2}}{\boldsymbol {\omega }}\cdot \mathbf {L} \,\!}
。
或者,用矩阵来表达,
K
′
=
1
2
ω
T
I
ω
{\displaystyle K\,\!'={\frac {1}{2}}{\boldsymbol {\omega }}^{\operatorname {T} }\ \mathbf {I} \ {\boldsymbol {\omega }}\,\!}
。
所以,刚体的动能为
K
=
1
2
m
v
¯
2
+
1
2
(
I
x
x
ω
x
2
+
I
y
y
ω
y
2
+
I
z
z
ω
z
2
+
2
I
x
y
ω
x
ω
y
+
2
I
x
z
ω
x
ω
z
+
2
I
y
z
ω
y
ω
z
)
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}(I_{xx}{\omega _{x}}^{2}+I_{yy}{\omega _{y}}^{2}+I_{zz}{\omega _{z}}^{2}+2I_{xy}\omega _{x}\omega _{y}+2I_{xz}\omega _{x}\omega _{z}+2I_{yz}\omega _{y}\omega _{z})\,\!}
。(9)
假设
x
{\displaystyle x}
-轴、
y
{\displaystyle y}
-轴、
z
{\displaystyle z}
-轴分别为一个刚体的惯量主轴,这刚体的主转动惯量分别为
I
x
{\displaystyle I_{x}\,\!}
、
I
y
{\displaystyle I_{y}\,\!}
、
I
z
{\displaystyle I_{z}\,\!}
,角速度是
ω
{\displaystyle {\boldsymbol {\omega }}\,\!}
。那么,刚体的动能为
K
=
1
2
m
v
¯
2
+
1
2
(
I
x
ω
x
2
+
I
y
ω
y
2
+
I
z
ω
z
2
)
{\displaystyle K={\frac {1}{2}}m{\bar {v}}^{2}+{\frac {1}{2}}(I_{x}{\omega _{x}}^{2}+I_{y}{\omega _{y}}^{2}+I_{z}{\omega _{z}}^{2})\,\!}
。(10)