[ 1 2 − 1 3 4 − 2 5 − 4 1 ] 1 0 0 0 1 0 0 0 1 → [ 1 2 − 1 0 − 2 1 0 − 14 6 ] 1 0 0 − 3 1 0 − 5 0 1 → [ 1 2 − 1 0 − 2 1 0 0 − 1 ] 1 0 0 − 3 1 0 16 − 7 1 → [ 1 2 0 0 − 2 0 0 0 − 1 ] − 15 7 − 1 13 − 6 1 16 − 7 1 → [ 1 0 0 0 − 2 0 0 0 − 1 ] − 2 1 0 13 − 6 1 16 − 7 1 → [ 1 0 0 0 1 0 0 0 1 ] − 2 1 0 − 13 / 2 3 − 1 / 2 − 16 7 − 1 {\displaystyle {\begin{array}{l}\left[{\begin{array}{*{20}c}1&2&{-1}\\3&4&{-2}\\5&{-4}&1\\\end{array}}\right]{\begin{array}{*{20}c}1&0&0\\0&1&0\\0&0&1\\\end{array}}\\\to \left[{\begin{array}{*{20}c}1&2&{-1}\\0&{-2}&1\\0&{-14}&6\\\end{array}}\right]{\begin{array}{*{20}c}1&0&0\\{-3}&1&0\\{-5}&0&1\\\end{array}}\to \left[{\begin{array}{*{20}c}1&2&{-1}\\0&{-2}&1\\0&0&{-1}\\\end{array}}\right]{\begin{array}{*{20}c}1&0&0\\{-3}&1&0\\{16}&{-7}&1\\\end{array}}\\\to \left[{\begin{array}{*{20}c}1&2&0\\0&{-2}&0\\0&0&{-1}\\\end{array}}\right]{\begin{array}{*{20}c}{-15}&7&{-1}\\{13}&{-6}&1\\{16}&{-7}&1\\\end{array}}\to \left[{\begin{array}{*{20}c}1&0&0\\0&{-2}&0\\0&0&{-1}\\\end{array}}\right]{\begin{array}{*{20}c}{-2}&1&0\\{13}&{-6}&1\\{16}&{-7}&1\\\end{array}}\\\to \left[{\begin{array}{*{20}c}1&0&0\\0&1&0\\0&0&1\\\end{array}}\right]{\begin{array}{*{20}c}{-2}&1&0\\{-13/2}&3&{-1/2}\\{-16}&7&{-1}\\\end{array}}\\\end{array}}}
[ 1 2 − 1 3 4 − 2 5 − 4 1 ] 1 0 0 0 1 0 0 0 1 → [ 1 2 − 1 0 − 2 1 0 − 14 6 ] 1 0 0 − 3 1 0 − 5 0 1 → [ 1 2 − 1 0 − 2 1 0 0 − 1 ] 1 0 0 − 3 1 0 16 − 7 1 → [ 1 2 0 0 − 2 0 0 0 − 1 ] − 15 7 − 1 13 − 6 1 16 − 7 1 → [ 1 0 0 0 − 2 0 0 0 − 1 ] − 2 1 0 13 − 6 1 16 − 7 1 → [ 1 0 0 0 1 0 0 0 1 ] − 2 1 0 − 13 / 2 3 − 1 / 2 − 16 7 − 1 {\displaystyle {\begin{array}{*{35}{l}}\left[{\begin{matrix}1&2&-1\\3&4&-2\\5&-4&1\\\end{matrix}}\right]{\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end{matrix}}\\\to \left[{\begin{matrix}1&2&-1\\0&-2&1\\0&-14&6\\\end{matrix}}\right]{\begin{matrix}1&0&0\\-3&1&0\\-5&0&1\\\end{matrix}}\to \left[{\begin{matrix}1&2&-1\\0&-2&1\\0&0&-1\\\end{matrix}}\right]{\begin{matrix}1&0&0\\-3&1&0\\16&-7&1\\\end{matrix}}\\\to \left[{\begin{matrix}1&2&0\\0&-2&0\\0&0&-1\\\end{matrix}}\right]{\begin{matrix}-15&7&-1\\13&-6&1\\16&-7&1\\\end{matrix}}\to \left[{\begin{matrix}1&0&0\\0&-2&0\\0&0&-1\\\end{matrix}}\right]{\begin{matrix}-2&1&0\\13&-6&1\\16&-7&1\\\end{matrix}}\\\to \left[{\begin{matrix}1&0&0\\0&1&0\\0&0&1\\\end{matrix}}\right]{\begin{matrix}-2&1&0\\-13/2&3&-1/2\\-16&7&-1\\\end{matrix}}\\\end{array}}}
下面是一个MIMO预编码的取值范围: w 2 ∈ { 1 + j 2 , 1 − j 2 , − 1 + j 2 , − 1 − j 2 } {\displaystyle {w_{2}}\in \left\{{\begin{array}{*{20}{c}}{{\frac {1+j}{2}},}&{{\frac {1-j}{2}},}&{{\frac {-1+j}{2}},}&{\frac {-1-j}{2}}\end{array}}\right\}} 下面是一个DPCH的功控计算:
A j = β d , r e f β c , r e f ⋅ L r e f L j K j K r e f {\displaystyle {{A}_{j}}={\frac {{\beta }_{d,ref}}{{\beta }_{c,ref}}}\cdot {\sqrt {\frac {{L}_{ref}}{{L}_{j}}}}{\sqrt {\frac {{K}_{j}}{{K}_{ref}}}}} 下面是一个百度知道的问题计算:
m − m + 1 m 2 = m m − m + 1 = − m + 1 {\displaystyle {\begin{aligned}&m{\sqrt {\frac {-m+1}{{m}^{2}}}}\\&={\frac {m}{m}}{\sqrt {-m+1}}\\&={\sqrt {-m+1}}\\\end{aligned}}}