维基百科:优良条目/2013年2月13日

经典力学里,拉普拉斯-龙格-楞次矢量(简称为LRL向量)主要是用来描述,当一个物体环绕著另外一个物体运动时,轨道的形状与取向。典型的例子是行星的环绕著太阳公转。在一个物理系统里,假若两个物体以万有引力相互作用,则LRL向量必定是一个运动常数,不管在轨道的任何位置,计算出来的LRL向量都一样;也就是说,LRL向量是一个保守量。更广义地,在开普勒问题里,由于两个物体以有心力相互作用,而连心力遵守平方反比定律,所以,LRL向量是一个保守量。氢原子是由两个带电粒子构成的。这两个带电粒子以遵守库仑定律静电力互相作用.静电力是一个标准的平方反比连心力。所以,氢原子内部的微观运动是一个开普勒问题。在量子力学的发展初期,薛定谔还在思索他的薛定谔方程的时候,沃尔夫冈·欧内斯特·泡利使用LRL向量,关键性地推导出氢原子的发射光谱。这结果给予物理学家很大的信心,量子力学理论是正确的。在经典力学量子力学里,因为物理系统的某一种对称性会产生一个或多个对应的保守值。LRL向量也不例外。可是,它相对应的对称性很特别;在数学里,开普勒问题等价于一个粒子自由地移动于四维空间的三维球面;所以,整个问题涉及四维空间的某种旋转对称。拉普拉斯-龙格-楞次矢量是因皮埃尔-西蒙·拉普拉斯卡尔·龙格威廉·楞次而命名。它又称为拉普拉斯向量龙格-楞次矢量,或楞次矢量。有趣的是,LRL向量并不是这三位先生发现的!这向量曾经被重复地发现过好几次。它等价于天体力学中无量纲离心率矢量。发展至今,在物理学里,有许多各种各样的LRL向量的推广定义;牵涉到狭义相对论,或电磁场,甚至于不同类型的有心力