圖靈微架構
圖靈微架構(英語:Turing microarchitecture),是由英偉達公司(nVIDIA)所開發的一種GPU微架構,用以取代伏打微架構(Volta microarchitecture)。命名為「圖靈」以向英國計算機科學家艾倫·圖靈(Alan Turing)致敬。這個微架構於 2018 年 8 月在 SIGGRAPH 2018 年會上首次在面向工作站的 Quadro RTX 卡中推出[2], 並於一周後在 科隆遊戲展(Gamescom)上在消費類 GeForce RTX 20 系列顯示卡中推出[3]。圖靈微架構以其 HPC 專有前身的前期工作為基礎,推出了首款能夠實現即時光線追蹤的消費產品,這是電腦繪圖產業的長期目標。關鍵要素包括專用人工智能處理器("Tensor cores")和專用光線追蹤處理器("RT Cores")。 圖靈微架構利用 DXR、OptiX 和 Vulkan 來存取光線追蹤。 2019年2月,Nvidia發表了NVIDIA GeForce 16系列GPU,採用了新的圖靈設計,但缺乏光線追蹤(RT)和張量(Tensor)核心。
發布日期 | 2018年9月20日 |
---|---|
製造工藝 | 台積電 12 nm (FinFET) |
歷史 | |
前代產品 | |
後繼產品 | 安培[1] |
圖靈微架構採用台積電的 12 nm FinFET 半導體製造製程。 高階 TU102 GPU 包括使用此製程製造的 186 億個電晶體。 圖靈微架構也使用三星電子 (Samsung Electronics) 和先前的美光科技 (Micron Technology) 的 GDDR6 記憶體。
細節信息
圖靈微架構結合了多種類型的專用處理器核心,並實現了實時光線追蹤技術(儘管大多數仍限於對物理建模的材質、室內反射和照明)[4]。這得益於新的 RT 核心的使用,這些核心被設計用於處理四叉樹和球形層次結構,並為單個三角形的碰撞測試提速。
圖靈微架構的特性包括:
- CUDA 核心(流式多處理器)
- 計算能力(Compute Capability):7.5
- 傳統的柵格化着色器和計算
- 整數和浮點操作的並行執行(繼承自伏打微架構)
- 光線追蹤(RT)核心
- 張量(AI 中的 Tensor)核心[6]
- GDDR6/HBM2 支持的內存控制器
- 帶有顯示壓縮流(DSC 1.2)技術的 1.4a 版本 DisplayPort 接口
- 支持使用 PureVideo 技術的 Feature Set J 來進行硬件加速的視頻解碼
- GPU Boost 4
- 支持通過 NVLink Bridge 實現多個顯卡的連接,並使用 VRAM 堆疊的方式匯集多個顯卡的內存
- VirtualLink 標準虛擬現實
- NVENC(NVIDIA Encoder)硬件編碼引擎
GDDR6 內存由三星電子為 Quadro RTX 系列生產[7]。RTX 20 系列在最初發布時使用美光的內存芯片,在 2018 年 11 月換為三星芯片[8]。
柵格化(Rasterization)
NVIDIA 報告稱,在現有的軟件標題中,柵格化(使用 CUDA 技術)的性能相較於前一代提升了大約 30-50%[9][10]。這表示圖靈架構的 NVIDIA GPU 在處理現有軟件時,通過柵格化技術取得了相當可觀的性能提升,提高了圖形處理的效率。
光線追蹤(Ray-tracing)
RT 核心執行的光線追蹤可用於生成反射、折射和陰影,從而取代一些傳統的柵格技術,如立方體貼圖(Cube maps)和深度貼圖(Depth maps)。需要注意的是,光線追蹤技術並非完全替代柵格化技術,光線追蹤收集到的信息可以用於增強着色,使圖像更加寫實,特別是在處理攝像機視野之外發生的動作(off-camera action)時。NVIDIA 表示,光線追蹤性能相較上一代消費者架構 Pascal 提高了約 8 倍。
張量核心(Tensor cores)
利用張量核心,最終圖像的生成能夠得到進一步加速,這些核心用於填充部分渲染圖像中的空白,這一技術被稱為去噪(de-noising)。張量核心負責執行深度學習的結果運算結果,對處理特定任務的方法進行編碼,使得系統能夠理解和應用這些方法。這種編碼過程使得系統能夠更有效地執行某些任務,例如增加特定應用程序或遊戲生成圖像的分辨率。在張量核心的主要用途中,需要解決的問題會在超級計算機上進行分析,該計算機通過示例學習期望的結果,確定實現這些結果的方法,隨後,這些方法通過驅動程序更新傳遞給消費者,最終由消費者的張量核心執行操作[9]。超級計算機本身使用了大量的張量核心。
圖靈晶粒(Turing dies)
晶粒 | TU102 | TU104 | TU106 | TU116 | TU117 |
---|---|---|---|---|---|
晶粒大小 | 754 mm2 | 545 mm2 | 445 mm2 | 284 mm2 | 200 mm2 |
晶體管數量 | 18.6B | 13.6B | 10.8B | 6.6B | 4.7B |
晶體管密度 | 24.7 MTr/mm2 | 25.0 MTr/mm2 | 24.3 MTr/mm2 | 23.2 MTr/mm2 | 23.5 MTr/mm2 |
圖形處理集群 (GPC) |
6 | 6 | 3 | 3 | 2 |
流處理多處理器 (SM) |
72 | 48 | 36 | 24 | 16 |
CUDA核心數 | 4608 | 3072 | 2304 | 1536 | 1024 |
紋理映射單元 (TMU) |
288 | 192 | 144 | 96 | 64 |
渲染輸出單元 (ROP) |
96 | 64 | 64 | 48 | 32 |
張量核心 | 576 | 384 | 288 | 不適用 | |
光線追蹤核心 | 72 | 48 | 36 | ||
L1 緩存 | 6.75 MB | 4.5 MB | 3.375 MB | 2.25 MB | 1.5 MB |
96 KB per SM | |||||
L2 緩存 | 6 MB | 4 MB | 4 MB | 1.5 MB | 1 MB |
最大熱設計功耗 (Max TDP) |
280 W | 250 W | 185 W | 125 W | 75 W |
開發
圖靈微架構的開發平台是 RTX。可以通過 Microsoft 的 DXR(DirectX Raytracing),OptiX, 以及使用 Vulkan 拓展(最後者在 Linux 驅動上也可以使用)來調用 RTX 的光線追蹤功能[11]。AI 加速功能可以通過 NGX 集成到應用程序中[12]。網格着色器(Mesh Shader)和着色率圖像(Shading Rate Image)功能可以在 Windows 和 Linux 平台上使用 DX12、Vulkan 和 OpenGL 擴展來訪問[13]。
採用圖靈微架構的產品
- GeForce MX 系列
- GeForce MX450 (Mobile)
- GeForce MX550 (Mobile)
- GeForce 16 系列
- GeForce GTX 1630
- GeForce GTX 1650 (Mobile)
- GeForce GTX 1650
- GeForce GTX 1650 Super
- GeForce GTX 1650 Ti (Mobile)
- GeForce GTX 1660
- GeForce GTX 1660 Super
- GeForce GTX 1660 Ti (Mobile)
- GeForce GTX 1660 Ti
- GeForce 20 系列
- GeForce RTX 2060 (Mobile)
- GeForce RTX 2060
- GeForce RTX 2060 Super
- GeForce RTX 2070 (Mobile)
- GeForce RTX 2070
- GeForce RTX 2070 Super (Mobile)
- GeForce RTX 2070 Super
- GeForce RTX 2080 (Mobile)
- GeForce RTX 2080
- GeForce RTX 2080 Super (Mobile)
- GeForce RTX 2080 Super
- GeForce RTX 2080 Ti
- Titan RTX
- Nvidia Quadro
- Quadro RTX 3000 (Mobile)
- Quadro RTX 4000 (Mobile)
- Quadro RTX 4000
- Quadro RTX 5000 (Mobile)
- Quadro RTX 5000
- Quadro RTX 6000 (Mobile)
- Quadro RTX 6000
- Quadro RTX 8000
- Quadro T1000 (Mobile)
- Quadro T2000 (Mobile)
- T400
- T400 4GB
- T500 (Mobile)
- T600 (Mobile)
- T600
- T1000
- T1000 8GB
- T1200 (Mobile)
- Nvidia Tesla
- Tesla T4
參考資料
- ^ Tom Warren; James Vincent. Nvidia’s first Ampere GPU is designed for data centers and AI, not your PC. The Verge. May 14, 2020 [2020-10-21]. (原始內容存檔於2020-12-08).
New 「RTX 3080」 cards could be just months away then, but we still don’t know for sure if they』ll be using this new Ampere architecture.
- ^ Smith, Ryan. NVIDIA Reveals Next-Gen Turing GPU Architecture: NVIDIA Doubles-Down on Ray Tracing, GDDR6, & More. AnandTech. August 13, 2018 [April 9, 2023]. (原始內容存檔於2020-04-24) (美國英語).
- ^ Smith, Ryan. NVIDIA Announces the GeForce RTX 20 Series: RTX 2080 Ti & 2080 on Sept. 20th, RTX 2070 in October. AnandTech. August 20, 2018 [April 9, 2023]. (原始內容存檔於2018-08-21) (美國英語).
- ^ Warren, Tom. Nvidia announces RTX 2000 GPU series with '6 times more performance' and ray-tracing. The Verge. August 20, 2018 [August 20, 2018]. (原始內容存檔於2018-08-20) (美國英語).
- ^ Oh, Nate. The NVIDIA Turing GPU Architecture Deep Dive: Prelude to GeForce RTX. AnandTech. September 14, 2018 [April 9, 2023]. (原始內容存檔於2024-05-12) (美國英語).
- ^ TENSOR CORE DL PERFORMANCE GUIDE (PDF). Nvidia. (原始內容存檔 (PDF)於2020-11-11).
- ^ Mujtaba, Hassan. Samsung GDDR6 Memory Powers NVIDIA's Turing GPU Based Quadro RTX Cards. Wccftech. August 14, 2018 [April 9, 2023] (美國英語).
- ^ Maislinger, Florian. Faulty RTX 2080 Ti: Nvidia switches from Micron to Samsung for GDDR6 memory. PC Builder's Club. November 21, 2018 [July 15, 2019].
- ^ 9.0 9.1 #BeForTheGame. Twitch. [2024-01-12]. (原始內容存檔於2023-03-30) (美國英語).
- ^ Fisher, Jeff. GeForce RTX Propels PC Gaming's Golden Age with Real-Time Ray Tracing. Nvidia. August 20, 2018 [April 9, 2023] (美國英語).
- ^ NVIDIA RTX platform. Nvidia. July 20, 2018 [April 9, 2023]. (原始內容存檔於2018-03-31) (美國英語).
- ^ NVIDIA NGX. NVIDIA Docs. February 14, 2023 [2024-01-12]. (原始內容存檔於2024-04-16) (英語).
- ^ Turing Extensions for Vulkan and OpenGL. Nvidia. September 11, 2018 [April 9, 2023] (美國英語).
- ^ Pelletier, Sean. Windows 10 October 2018 Update a Catalyst for Ray-Traced Games. Nvidia. October 2, 2018 [April 9, 2023]. (原始內容存檔於2023-09-22) (美國英語).
- ^ van Rhyn, Jacques. DirectX Raytracing and the Windows 10 October 2018 Update. Microsoft. October 2, 2018 [April 9, 2023] (美國英語).
外部連結
- (英文)Nvidia Turing GPU Architecture Whitepaper(頁面存檔備份,存於網際網路檔案館)
- (繁體中文)Nvidia page about Turing(頁面存檔備份,存於網際網路檔案館)
- (英文)Nvidia blog about raytracing vs. rasterization(頁面存檔備份,存於網際網路檔案館)
- (英文)NVIDIA Turing Architecture In-Depth(頁面存檔備份,存於網際網路檔案館)
- (英文)Microsoft developer blog on DirectX Raytracing(頁面存檔備份,存於網際網路檔案館)
這是一篇與電腦相關的小作品。您可以透過編輯或修訂擴充其內容。 |