歐姆定律
在電路學裡,歐姆定律(英語:Ohm's law)表明:定溫下,電導體兩端的電壓 與通過電導體的電流 成正比[1]。數學表達式為:
因此,對於任意電導體(電路、電路元件、甚至電阻器),電阻 可定義為此正比關係的比例常數[1]:
且可得到下列方程式:
不論電流、電壓為何,電阻定義均為電壓除以電流。此外,任何電導體都有電阻,即使超導體在一般溫度下也具有微小的電阻。
然而並不是每一種元件都遵守歐姆定律,此定律是經過多次實驗而推斷的法則,只有在理想狀況下,才會成立。凡是遵守歐姆定律的元件或電路都稱為「歐姆元件」或「歐姆電路」或「歐姆式導體」,其電阻與電流、電壓的變動無關;不遵守歐姆定律的元件或電路稱為「非歐姆元件」或「非歐姆電路」或「非歐姆式導體」,其電阻可能會與電流、電壓的變動有關。
歐姆定律是因德國物理學家格奧爾格·歐姆命名。於1827年,在他發表的一本通論《直流電路的數學研究》(The galvanic Circuit investigated mathematically)裏[2],他詳細的論述簡單電路兩端的電壓與流動於電路的電流之間的關係。他所論述的關係比較複雜,稍後會有更詳細說明。上述方程式乃是歐姆定律的現代版本。
對於電阻物質或導電物質,歐姆定律可以推廣為:
其中,是電場,是物質的電流密度,是物質的電阻率,是物質的電導率。
遵守歐姆定律的物質,稱為「歐姆物質」,其電阻率和電導率與電流密度、電場無關[1]。
歷史
早於1753年,意大利物理學家喬凡尼·貝卡立亞就在研究物質的導電性質。他在電路裏加裝了盛滿了水的玻璃管。當開啟電路後,發現玻璃管的截面面積越大,電流的放電強度越大[3]。
英國物理學家亨利·卡文迪什也曾做過很多實驗,研究電動勢、電流、電阻之間的關係。他使用萊頓瓶為電流源,將電流通過在各種尺寸的玻璃試管裏盛裝的鹽溶液,靠著調整鹽溶液的高度,他可以控制放電強度。卡文迪什把自己身體當作一台生理檢流計,從親身體驗被電擊後的感覺,來估計電流的放電強度。他又選擇出一個裝滿鹽溶液的玻璃試管為標準,然後比較標準放電與試樣放電,按照放電強度的大小來估計它們的電阻。這樣,他可以定量地描述每一種試樣。於1781年1月,他記錄在筆記裏,電流與電動勢成正比。但是,他並沒有將這些珍貴的實驗結果告訴任何科學家。一直到馬克士威於1879年替他編輯注釋為著作《卡文迪什的電學研究》(The electrical researches of the Honourable Henry Cavendish)後,才見諸世面[4][5]。注意到卡文迪什使用的儀器相當原始粗陋,靠身體感覺很難做出精準的測量,萊頓瓶並不是穩定電流源。所以,學術界認為這耽擱了近百年的實驗結果並不足以證實歐姆定律。
從1825年到1826年之間,歐姆做了很多關於電阻的實驗。於1827年,他將得到的結果一同發表在著作《直流電路的數學研究》(The galvanic Circuit investigated mathematically)裏[6]。他從傅立葉對於熱傳導的研究得到了相當多的靈感,借用了很多傅立葉的點子來論述自己的結果。
歐姆是一位優秀的實驗者,很會設計與製造實驗設備,又具有精湛的數學修養與嚴謹的敬業態度。剛開始,他使用伏打電堆為電源,用安裝於扭秤(torsion balance)的磁針來測量電流的磁場力。載流導線的電流所產生的磁場與電流成正比,只要測量在載流導線附近的磁針所感受到的磁場力,就可以知道電流。他將電流通過不同長度的檢驗電線;由於長度不同,電阻也不同。歐姆仔細分析實驗結果,得到經驗方程式[7] [8]
其中, 是檢驗電線造成的電流差值, 是跟實驗參數有關的係數, 是檢驗電線的長度, 是跟固定長度的載流導線有關的常數。
歐姆很快地就覺得這方程式不太對勁。大約三年前,湯瑪斯·澤貝克發明使用熱電偶為電源。這種電源比伏打電源穩定。採納《物理與化學年鑑》的總編輯約翰·波根多夫(Johann poggendorff)的建議,歐姆改用熱電偶為電源[9][10],將實驗重做一遍,得到經驗方程式:
其中, 是扭秤讀值, 是跟電動勢有關的常數, 是跟內部電阻有關的常數, 是檢驗電線的長度。
仔細詮釋這些變量,將 、 、 、 分別詮釋為電流 、電壓 、內部電阻 、檢驗電阻 ,那麼,假定總電阻 為 則經驗方程式變為歐姆定律的現代方程式版本:
歐姆定律可能是早期電學史最重要的定量理論。但是,當歐姆最初發表他的結果時,很多學術界同仁都激烈地批評反對他的理論。德國教育部長指責:「鼓吹這種異端邪說的教授不配教導科學[11]。」物理教授格奧爾格·魄爾(Georg Pohl)這樣批評歐姆的著作:「以崇高眼光仰看這世界的人士,必須遠離這本無可救藥、妄生穿鑿的謬書,其唯一目的乃是徹底詆毀大自然的尊嚴[7]。」。那時候,德國正盛行的黑格爾哲學認為,因為大自然井井有序,而且只要經過合理推論就可獲得科學真理,所以,並不需要靠做實驗來了解大自然。歐姆的實驗方法可能引起了黑格爾門徒的強烈反感。
1839年,法國物理學家,克勞德·普雷特(Claude Pouillet)確定歐姆的實驗結果。同時,歐姆成為柏林科學院的院士。在英國,查爾斯·惠斯通又重新核對了歐姆的實驗結果。1841年,歐姆被選為皇家學會的外籍會員。1852年,歐姆榮膺為慕尼黑大學的物理學系主任。
於1920年,物理學家發現,通過理想電阻器的電流會出現統計漲落,雖然當電壓和電阻為常數時,統計漲落會跟溫度有關。這種漲落稱為詹森-奈奎斯特噪音(Johnson–Nyquist noise),是因為電荷的離散秉性而產生的現像。這熱效應意味著,假若取樣的時間間隔足夠短暫,電流或電壓的測值,其比例跟時間平均比例或系綜平均(ensemble average)比例相比較,會出現漲落;也就是說,每一個電阻 的取樣值,跟 的時間平均或系綜平均相比較,會出現漲落。對於普通電阻物質案例,經過平均程序後,歐姆定律仍舊正確無誤。
歐姆對於電阻的研究在馬克士威方程組出現之前很久,那時科學家對於交流電路的頻率相關效應也不了解。但是,在適當範圍內,現代電磁理論與現代電路理論並沒有發現任何與歐姆定律相悖之處。
水力學類比
歐姆定律可以用水力學類比(hydraulic analogy)來描述。測量單位為帕斯卡的水壓,可以類比為電壓。在一根水管裏,由於任意兩點之間的水壓差會造成水流,水的流速(單位是公升每秒),可以類比為電流(單位是庫侖每秒)。「流量限制器」是安裝於水管與水管之間控制流量的閥門,可以類比為電阻器。通過流量限制器的水流流量,跟流量限制器兩端的水壓成正比,類似地,通過電阻器的電荷流量(電流),跟電阻器兩端的電壓成正比。這正是歐姆定律的論述。
流體流動網路的流量和流壓可以用水力學類比方法來計算[12][13]。這方法可以應用於穩定流和暫態流(transient flow)。對於線性層流,泊肅葉定律(Poiseuille's law)描述水管的水阻,但是對於湍流,流壓-流量關係變為非線性。
熱力學類比
設定電導體的電導率與兩端的電壓,歐姆定律可以預測出通過這電導體的電流密度。類似地,設定熱導體的熱導率與兩端的溫差,約瑟夫·傅立葉的熱傳導定律可以預測通過這熱導體的熱流[14]。同樣的方程式形式可以描述這兩種現象。對於每一種案例,方程式的變量有不同的意義。具體而言,歐姆定律的方程式為:
而熱傳導定律的方程式為:
其中, 是熱通量(heat flux), 是導熱體的熱導率, 是溫度。
思考參數為溫度、熱導率與熱通量的熱傳導問體,和參數為電壓、電導率與電流密度的電傳導問體。這兩個問題相互等價。假若能夠解析一個熱傳導問體,則也能夠解析電傳導問題;反之亦然。
電路分析
在電路學裏,電阻器(歐姆電阻器)是一種電路元件,其電阻與電壓、電流無關。電阻器可以按照歐姆定律阻抗電荷的通過。每一個電阻器都有其設計製成的電阻 。更嚴格地說,電阻器是在某操作域內遵守歐姆定律的電路元件;歐姆定律和唯一電阻值足夠描述這元件在相關操作域的行為。
串聯電阻電路
串聯電阻的總電阻等於各個電阻之和,以方程式表示,
其中, 是第 個電阻, 是總電阻。
假設在電路兩端的電壓為 ,則通過的電流為 。假設每一個電阻器都遵守歐姆定律,則這電路是電阻為 的歐姆電路。
並聯電阻電路
相互並聯的電阻,其總電阻的倒數等於其每個電阻的倒數和,以方程式表示:
假設在電路兩端的電壓為 ,則通過的電流為 。假設每一個電阻器都遵守歐姆定律,則這電路是電阻為 的歐姆電路。
週期性激發
電容器、電感器、傳輸線等等,都是電路的電抗元件。假設施加週期性電壓或週期性電流於含有電抗元件的電路,則電壓與電流之間的關係式變成微分方程式。因為歐姆定律的方程式只涉及實值的電阻,不涉及可能含有電容或電感的複值阻抗,所以,前面闡述的歐姆定律不能直接應用於這狀況。
最基本的週期性激發,像正弦激發或餘弦激發,都可以用指數函數來表達:
假設週期性激發為單頻率正弦激發,其角頻率為 。電阻為 的電阻器,其阻抗 為:
電感為 的電感器,其阻抗為:
電容為 的電容器,其阻抗為:
電壓 與電流 的關係式為:
注意到將阻抗 替代電阻 ,就可以得到這歐姆定律方程式的推廣。只有 的實值部分會造成熱能的耗散。
對於這系統,電流和電壓的複值波形式分別為:
電流和電壓的實值部分 、 分別描述這電路的真實正弦電流和正弦電壓。由於 、 都是不同的複值純量,電流和電壓的相位可能會不一樣。
週期性激發可以傅立葉分解為不同角頻率的正弦函數激發。對於每一個角頻率的正弦函數激發,可以使用上述方法來計算響應。然後,將所有響應總和起來,就可以得到解答。
線性近似
歐姆定律是電路分析(circuit analysis)使用的幾個基本方程式之一。它可以應用於金屬導電體或特別為這行為所製備的電阻器。在電機工程學裏,這些東西無所不在。遵守歐姆定律的物質或元件稱為「歐姆物質」或「歐姆元件」。理論上,不論施加的電壓或電流、不論是直流或交流、不論是正極或負極,它們的電阻都不變[15]。
但是,有些電路元件不遵守歐姆定律,它們的電壓與電流之間的關係(V-I線)乃非線性關係。PN接面二極體是一個顯明範例。如右圖所示,隨著二極體兩端電壓的遞增,電流並沒有線性遞增。給定外電壓,可以用V-I線來估計電流,而不能用歐姆定律來計算電流,因為電阻會因為電壓的不同而改變。另外,只有當外電壓為正值時,電流才會顯著地遞增;當施加的電壓為負值時,電流等於零。對於這類元件,V-I線的斜率 ,稱為「小信號電阻」(small-signal resistance)、「增量電阻」(incremental resistance)或「動態電阻」(dynamic resistance),定義為
溫度效應
詹姆斯·馬克士威詮釋歐姆定律為,處於某狀態的導電體,其電動勢與產生的電流成正比。因此,電動勢與電流的比例,即電阻,不會隨著電流而改變。在這裡,電動勢就是導電體兩端的電壓。參考這句引述的上下文,修飾語「處於某狀態」,詮釋為處於常溫狀態,這是因為物質的電阻率通常跟溫度有關。根據焦耳定律,導電體的焦耳加熱(Joule heating)與電流有關,當傳導電流於導電體時,導電體的溫度會改變。電阻對於溫度的相關性,使得在典型實驗裏,電阻跟電流有關,從而很不容易直接核對這形式的歐姆定律。於1876年,馬克士威與同事,共同設計出幾種測試歐姆定律的實驗方法,能夠特別凸顯出導電體對於加熱效應的響應[17]。
其它版本的歐姆定律
在電機工程學和電子工程學裏,歐姆定律妙用無窮,因為它能夠在宏觀層次表達電壓與電流之間的關係,即電路元件兩端的電壓與通過的電流之間的關係。在物理學裏,對於物質的微觀層次電性質研究,會使用到的歐姆定律,以向量方程式表達為:
在導體內任意兩點g、h,定義電壓為將單位電荷從點g移動到點h,電場力所需做的機械功:[18]
其中, 是電壓, 是機械功, 是電荷量, 是微小線元素。
假設,沿著積分路徑,電流密度 為均勻電流密度,並且平行於微小線元素:
其中, 是積分路徑的單位向量。
那麼,可以得到電壓:
其中, 是積分路徑的徑長。
假設導體具有均勻的電阻率,則通過導體的電流密度也是均勻的:
其中, 是導體的截面面積。
電壓 簡寫為 。電壓與電流成正比:
總結,電阻與電阻率的關係為:
假設 ,則 ;將單位電荷從點g移動到點h,電場力需要作的機械功 。所以,點g的電勢比點h的電勢高,從點g到點h的電勢差為 。從點g到點h,電壓降是 ;從點h到點g,電壓升是 。
給予一個具有完美晶格的晶體,移動於這晶體的電子,其運動等價於移動於自由空間的具有有效質量(effective mass)的電子的運動。所以,假設熱運動足夠微小,週期性結構沒有偏差,則這晶體的電阻等於零。但是,真實晶體並不完美,時常會出現晶體缺陷(crystallographic defect),有些晶格點的原子可能不存在,可能會被雜質侵佔。這樣,晶格的週期性會被擾動,因而電子會發生散射。另外,假設溫度大於絕對溫度,則處於晶格點的原子會發生熱震動,會有熱震動的粒子,即聲子,移動於晶體。溫度越高,聲子越多。聲子會與電子發生碰撞,這過程稱為晶格散射(lattice scattering)。主要由於上述兩種散射,自由電子的流動會被阻礙,晶體因此具有有限電阻[19]。
凝聚態物理學研究物質的性質,特別是其電子結構。在凝聚態物理學裏,歐姆定律更複雜、更廣義的方程式非常重要,屬於本構方程式(constitutive equation)與運輸係數理論(theory of transport coefficients)的範圍。
經典微觀表述
當施加外電場於導電體時,電流密度的響應,基本上是屬於量子力學性質。詳盡細節,請參閱經典與量子電導率(classical and quantum conductivity)。保羅·德魯德於1900年研究出的德魯德模型,可以用經典物理解釋歐姆定律,描述自由電子移動於金屬導電體的物理行為[20] [21]。
在德魯德模型裏,自由電子會不停地移動碰撞於固定不動、組成整個金屬導電體晶格的正價離子之間。金屬裏的每一個自由電子,感受到電場力的作用,會呈加速運動。但是每當自由電子與晶格發生碰撞,其動能會遭受損失,以熱能的形式將能量釋放給離子,所以,電子的平均移動速度是漂移速度,其漂移速度的方向與電場方向相反。
電子感受到的平均電場力 為:
其中, 是平均電場, 是單位電荷量。
德魯德計算出漂移速度 為:
其中, 是平均自由時間(mean free time),是碰撞之間的平均時間間隔, 是電子的質量。
在金屬裏,電荷載子為電子,所以電流密度與漂移速度的關係為:
其中, 是電子密度。
假設電場是均勻電場, ,設定電阻率為:
則電場與電流密度的關係為:
注意到漂移速率 超小於熱速率 ,
因此,平均自由時間與熱速率有關,與漂移速率無關,所以平均自由時間也與電流密度、電場無關。質量、電子密度、單位電荷,都與電流密度、電場無關。總結,電阻率與電流密度、電場無關。
磁效應
前面得到的答案只成立於導電體的參考系。在經典電磁學裏,假設處於磁場 的導電體,以相對速度 移動於磁場的參考系 ,則電子感受到的平均勞侖茲力 為:
漂移速度 為:
電場與電流密度的關係為:
所以,歐姆定律的形式推廣為:
常見錯誤
不少人會認為歐姆定律是在說明
實際上,上式只是電阻的定義,而歐姆定律所主張的是任何物件都會滿足
是一個錯誤的主張。(僅對部分歐姆式導體正確)[22]
參閱
參考文獻
- ^ 1.0 1.1 1.2 Halliday, David; Robert Resnick, Jearl Walker, Fundamental of Physics 7th, USA: John Wiley and Sons, Inc.: pp. 691–692, 2005, ISBN 0-471-23231-9
- ^ 歐姆, 格奧爾格, The Galvanic Circuit Investigated Mathematically, New York: D. Van Nostrand Company, 1891
- ^ Whittaker, E. T., A history of the theories of aether and electricity. Vol 1, Nelson, London: pp. 53, 1951
- ^ Electricity, Encyclopedia Britannica, 1911, (原始內容存檔於2008-09-15)
- ^ Sanford P. Bordeau (1982) Volts to Hertz...the Rise of Electricity. Burgess Publishing Company, Minneapolis, MN. pp.86–107, ISBN 978-0-8087-4908-0
- ^ G. S. Ohm, The galvanic Circuit investigated mathematically, D. Van Nostrand Company, 1891
- ^ 7.0 7.1 Hammond, P., Georg Simon Ohm and his law (PDF), Jounal of the Institution of Electrical Engineers, June 1958, 4 (42): pp. 294–296[永久失效連結]
- ^ Gupta, Madhu Sudan, Georg Simon Ohm and Ohm's Law, IEEE Transactions on Education, Aug 1980, 23 (3): pp. 156–162
- ^ Shedd, John C.; Hershey, Mayo D., The History of Ohm's Law, Popular Science Monthly (Bonnier Corporation), 1913: pp. 599ff
- ^ Keithley, Joseph F., The story of electrical and magnetic measurements: from 500 B.C. to the 1940s, John Wiley and Sons: pp.93ff, 102, 1999, ISBN 9780780311930
- ^ Pickover, Clifford, Archimedes to Hawking: laws of science and the great minds behind them, U.S.A.: Oxford University Press: pp. 8, 2008, ISBN 9780195336115
- ^ A. Akers, M. Gassman, & R. Smith. Hydraulic Power System Analysis. New York: Taylor & Francis. 2006: Chapter 13. ISBN 0-8247-9956-9.
- ^ A. Esposito, "A Simplified Method for Analyzing Circuits by Analogy", Machine Design, October 1969, pp. 173–177.
- ^ 傅立葉, 約瑟夫, The Analytical Theory of Heat, Cambridge University Press, 2009 [1878], ISBN 978-1-108-00178-6
- ^ Hughes, E, Electrical Technology, pp10, Longmans, 1969.
- ^ Horowitz, Paul; Winfield Hill. The Art of Electronics 2nd. Cambridge University Press. 1989: 13. ISBN 0-521-37095-7.
- ^ Normal Lockyer (編). Reports. Nature (Macmillan Journals Ltd). September 21, 1876, 14: 452.
- ^ Alexander, Charles; Sadiku, Matthew, fundamentals of Electric Circuits 3, revised, McGraw-Hill: pp. 9–10, 2006, ISBN 9780073301150
- ^ Seymour J, Physical Electronics, pp 48–49, Pitman, 1972
- ^ Drude, Paul. Zur Elektronentheorie der metalle. Annalen der Physik. 1900, 306 (3): 566. doi:10.1002/andp.19003060312.[永久失效連結]
- ^ Drude, Paul. Zur Elektronentheorie der Metalle; II. Teil. Galvanomagnetische und thermomagnetische Effecte. Annalen der Physik. 1900, 308 (11): 369. doi:10.1002/andp.19003081102.[永久失效連結]
- ^ Principles of Physics 11th Edition, by David Halliday, Robert Resnic, Jearl Walker, page 26-13