聚酰亞胺
酰亞胺單體的聚合物
聚酰亞胺(英語:Polyimide,PI)是一類具有酰亞胺重複單元的聚合物,具有適用溫度廣、耐化學腐蝕、高強度等優點。1961年杜邦公司首次推出聚酰亞胺的商品。聚酰亞胺作為一種特種工程材料,今日已廣泛應用在航空、航天、微電子、納米、液晶、分離膜、激光等領域。
分類與合成
根據重複單元的化學結構,聚酰亞胺可以分為脂肪族、半芳香族和芳香族聚酰亞胺三種。根據熱性質,可分為熱塑性和熱固性聚酰亞胺。
常用的合成方法有:
- 二酐和二異氰酸酯反應。
物理性質
熱固性聚酰亞胺具有優異的熱穩定性、耐化學腐蝕性和機械性能,通常為橘黃色。石墨或玻璃纖維增強的聚酰亞胺的抗彎強度可達到345 MPa,抗彎模量達到20GPa.熱固性聚酰亞胺蠕變很小,有較高的拉伸強度。聚酰亞胺的使用溫度範圍覆蓋較廣,從零下一百餘度到兩三百度。
化學性質
聚酰亞胺化學性質穩定。聚酰亞胺不需要加入阻燃劑就可以阻止燃燒。一般的聚酰亞胺都抗化學溶劑如烴類、酯類、醚類、醇類和氟氯烷。它們也抗弱酸但不推薦在較強的鹼和無機酸環境中使用。某些聚酰亞胺如CP1和CORIN XLS是可溶於溶劑,這一性質有助於發展他們在噴塗和低溫交聯上的應用。
應用
薄膜
聚酰亞胺薄膜是聚酰亞胺最早的商品之一,用於電機的槽絕緣及電纜繞包材料。主要產品有杜邦Kapton,宇部興產的Upilex系列和鍾淵Apical。透明的聚酰亞胺薄膜可作為柔軟的太陽能電池底版。IKAROS的帆就是使用聚酰亞胺的薄膜制和纖維作的[2]在火力發電部門,聚酰亞胺纖維可以用於熱氣體的過濾,聚酰亞胺的紗可以從廢氣中分離出塵埃和特殊的化學物質。
- 塗料:作為絕緣漆用於電磁線,或作為耐高溫塗料使用。
- 先進複合材料:用於航天、航空器及火箭部件。是最耐高溫的結構材料之一。例如美國的超音速客機計劃所設計的速度為2.4M,飛行時表面溫度為177℃,要求使用壽命為60000h,據報道已確定50%的結構材料為以熱塑型聚酰亞胺為基體樹脂的碳纖維增強複合材料,每架飛機的用量約為30t。
- 纖維:彈性模量僅次於碳纖維,作為高溫介質及放射性物質的過濾材料和防彈、防火織物。中國長春有生產各種聚酰亞胺產品。
- 泡沫塑料:用作耐高溫隔熱材料。
- 工程塑料:有熱固性也有熱塑型,熱塑型可以模壓成型也可以用注射成型或傳遞模塑。主要用於自潤滑、密封、絕緣及結構材料。廣成聚酰亞胺材料已開始應用在壓縮機旋片、活塞環及特種泵密封等機械部件上。
- 分離膜:用於各種氣體對,如氫/氮、氮/氧、二氧化碳/氮或甲烷等的分離,從空氣烴類原料氣及醇類中脫除水分。也可作為滲透蒸發膜及超濾膜。由於聚酰亞胺耐熱和耐有機溶劑性能,在對有機氣體和液體的分離上具有特別重要的意義。
由於PI薄膜具有良好的耐高低溫性能、環境穩定性、力學性能以及優良的介電性能,在眾多基礎工業與高技術領域中均得到廣泛應用。
- 軟性電路板:軟性電路板的銅箔基板(FCCL)以及軟性電路板(FPCB)的保護層的應用最普遍,且市場也最大。
- 絕緣材料:電機電子設備絕緣、耐高溫電線電纜、電磁線、耐高溫導線、絕緣復合材料等。
- 電子產業領域:印刷電路板的主機板、手機、離手機、鋰電池等產品。一般來說常用是25µm以下的PI膜。
- 半導體領域應用:微電子的鈍化層和緩衝內塗層、多層金屬層間介電材料、光電印刷電路板的重要基材。
- 非晶矽太陽能電池領域:透明的PI膜可作為軟性的太陽能電池底板。超薄的PI膜可應用於太陽帆(光帆)。
電子元件和半導體工業
- 光刻膠:某些聚酰亞胺還可以用作光刻膠。有負性膠和正性膠,分辨率可達亞微米級。與顏料或染料配合可用於彩色濾光膜,可大大簡化加工工序。
- 在微電子器件中的應用:用作介電層進行層間絕緣,作為緩衝層可以減少應力、提高成品率。作為保護層可以減少環境對器件的影響,還可以對a-粒子起屏蔽作用,減少或消除器件的軟誤差(soft error)。半導體工業使用聚酰亞胺作高溫黏合劑,在生產數字化半導體材料和MEMS系統的晶片時,由於聚酰亞胺層具有良好的機械延展性和拉伸強度,有助於提高聚酰亞胺層以及聚酰亞胺層與上面沉積的金屬層之間的粘合。[3] 聚酰亞胺的高溫和化學穩定性則起到了將金屬層和各種外界環境隔離的作用。[4][5]
- 液晶顯示用的取向排列劑:聚酰亞胺在TN-LCD、SHN-LCD、TFT-CD及未來的鐵電液晶顯示器的取向劑材料方面都占有十分重要的地位。
- 電-光材料:用作無源或有源波導材料光學開關材料等,含氟的聚酰亞胺在通訊波長範圍內為透明,以聚酰亞胺作為發色團的基體可提高材料的穩定性。
- 濕敏材料:利用其吸濕線性膨脹的原理可以用來製作濕度傳感器。
另見
參考文獻
- ^ 中国大百科全书(第二版),第12册,聚酰亚胺条目. 中國大百科全書出版社. 2003: 256–257.
- ^ Courtland, Rachel. Maiden voyage for first true space sail. The New Scientist. 10 May 2010 [11 June 2010]. (原始內容存檔於2013-07-27).
- ^ The effect of polyimide passivation on the electromigration of Cu multilayer interconnections[永久失效連結]
- ^ Digital Isolation Offers Compact, Low-Cost Solutions to Challenging Design Problems. [2013-06-24]. (原始內容存檔於2013-05-01).
- ^ iCoupler Products with isoPower Technology: Signal and Power Transfer Across Isolation Barrier Using Microtransformers (PDF). [2013-06-24]. (原始內容存檔 (PDF)於2013-01-24).