在數學的數值分析和計算機圖形學中,貝齊耶樣條是條樣的每個多項式都是伯恩斯坦多項式的樣條。
給定有k個結點xi的n次樣條S,可以如下這樣使這個樣條為貝齊耶樣條: S ( x ) := { S 0 ( x ) := ∑ ν = 0 n β ν , 0 b ν , n ( x ) x ∈ [ x 0 , x 1 ) S 1 ( x ) := ∑ ν = 0 n β ν , 1 b ν , n ( x − x 1 ) x ∈ [ x 1 , x 2 ) ⋮ ⋮ S k − 2 ( x ) := ∑ ν = 0 n β ν , k − 2 b ν , n ( x − x k − 2 ) x ∈ [ x k − 2 , x k − 1 ] {\displaystyle S(x):=\left\{{\begin{matrix}S_{0}(x):=&\sum _{\nu =0}^{n}\beta _{\nu ,0}b_{\nu ,n}(x)&x\in [x_{0},x_{1})\\S_{1}(x):=&\sum _{\nu =0}^{n}\beta _{\nu ,1}b_{\nu ,n}(x-x_{1})&x\in [x_{1},x_{2})\\\vdots &\vdots \\S_{k-2}(x):=&\sum _{\nu =0}^{n}\beta _{\nu ,k-2}b_{\nu ,n}(x-x_{k-2})&x\in [x_{k-2},x_{k-1}]\\\end{matrix}}\right.}