討論:幻方

基礎條目 幻方屬於維基百科數學主題的基礎條目第五級。請勇於更新頁面以及改進條目。
          本條目屬於下列維基專題範疇:
數學專題 (獲評未評級中重要度
本條目屬於數學專題範疇,該專題旨在改善中文維基百科數學類內容。如果您有意參與,請瀏覽專題主頁、參與討論,並完成相應的開放性任務。
 未評級未評  根據專題品質評級標準,本條目尚未接受評級。
   根據專題重要度評級標準,本條目已評為中重要度

3x3 -> 9x9

{{9x9 type square|BACKGROUND=#dfdfdf|ALIGN=right|WIDTH=20px|A00=31|A01=36|A02=29|A03=76|A04=81|A05=74|A06=13|A07=18|A08=11|A10=30|A11=32|A12=34|A13=75|A14=77|A15=79|A16=12|A17=14|A18=16|A20=35|A21=28|A22=33|A23=80|A24=73|A25=78|A26=17|A27=10|A28=15|A30=22|A31=27|A32=20|A33=40|A34=45|A35=38|A36=58|A37=63|A38=56|A40=21|A41=23|A42=25|A43=39|A44=41|A45=43|A46=57|A47=59|A48=61|A50=26|A51=19|A52=24|A53=44|A54=37|A55=42|A56=62|A57=55|A58=60|A60=67|A61=72|A62=65|A63=4|A64=9|A65=2|A66=49|A67=54|A68=47|A70=66|A71=68|A72=70|A73=3|A74=5|A75=7|A76=48|A77=50|A78=52|A80=71|A81=64|A82=69|A83=8|A84=1|A85=6|A86=53|A87=46|A88=51|C00=black|C01=black|C02=black|C03=black|C04=black|C05=black|C06=black|C07=black|C08=black|C10=black|C11=black|C12=black|C13=black|C14=black|C15=black|C16=black|C17=black|C18=black|C20=black|C21=black|C22=black|C23=black|C24=black|C25=black|C26=black|C27=black|C28=black|C30=black|C31=black|C32=black|C33=black|C34=black|C35=black|C36=black|C37=black|C38=black|C40=black|C41=black|C42=black|C43=black|C44=black|C45=black|C46=black|C47=black|C48=black|C50=black|C51=black|C52=black|C53=black|C54=black|C55=black|C56=black|C57=black|C58=black|C60=black|C61=black|C62=black|C63=blue|C64=blue|C65=blue|C66=black|C67=black|C68=black|C70=black|C71=black|C72=black|C73=blue|C74=blue|C75=blue|C76=black|C77=black|C78=black|C80=black|C81=black|C82=black|C83=blue|C84=blue|C85=blue|C86=black|C87=black|C88=black}}
'''question:''' Can you find 27 subsquares (nxn cells in n rows '''and''' n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?

generates:

31 36 29 76 81 74 13 18 11
30 32 34 75 77 79 12 14 16
35 28 33 80 73 78 17 10 15
22 27 20 40 45 38 58 63 56
21 23 25 39 41 43 57 59 61
26 19 24 44 37 42 62 55 60
67 72 65 4 9 2 49 54 47
66 68 70 3 5 7 48 50 52
71 64 69 8 1 6 53 46 51

question: Can you find 27 subsquares (nxn cells in n rows and n columns; values must not be consecutive) where the sum of the new diagonals, the sum of the new raws and the sum of the new columns is the identical for that particular subsquare?
See: Meta:User:Gangleri/tests/4x4 type square/examples – Best regards Gangleri | Th | T 22:19 2005年7月15日 (UTC)

返回 "幻方" 頁面。