Heun函數 指HeunB、HeunC、HeunD、HeunG、HeunT等五個函數
HeunG 函數
HeunG function
HeunG函數是下列GeneralHeun方程的解
d
2
w
d
z
2
+
[
γ
z
+
δ
z
−
1
+
ϵ
z
−
a
]
d
w
d
z
+
α
β
z
−
q
z
(
z
−
1
)
(
z
−
a
)
w
=
0.
{\displaystyle {\frac {d^{2}w}{dz^{2}}}+\left[{\frac {\gamma }{z}}+{\frac {\delta }{z-1}}+{\frac {\epsilon }{z-a}}\right]{\frac {dw}{dz}}+{\frac {\alpha \beta z-q}{z(z-1)(z-a)}}w=0.}
奇點
HeunG(a, b, \alpha, \beta, \gamma, \delta, z)函數有6個參數,有四個奇點
展開式
H
e
u
n
G
(
a
,
b
,
α
,
β
,
γ
,
δ
,
z
)
=
b
∗
z
/
(
γ
∗
a
)
−
(
1
/
2
)
∗
(
−
b
−
b
∗
a
∗
δ
−
b
∗
γ
∗
a
+
b
∗
δ
−
b
∗
α
−
b
∗
β
−
b
2
+
α
∗
β
∗
γ
∗
a
)
∗
z
2
/
(
γ
∗
a
2
∗
(
γ
+
1
)
)
+
O
(
z
3
)
{\displaystyle HeunG(a,b,\alpha ,\beta ,\gamma ,\delta ,z)=b*z/(\gamma *a)-(1/2)*(-b-b*a*\delta -b*\gamma *a+b*\delta -b*\alpha -b*\beta -b^{2}+\alpha *\beta *\gamma *a)*z^{2}/(\gamma *a^{2}*(\gamma +1))+O(z^{3})}
關係式
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
(
1
−
z
)
(
1
−
δ
)
∗
H
e
u
n
G
(
a
,
q
−
(
−
1
+
δ
)
∗
γ
∗
a
,
β
−
δ
+
1
,
α
−
δ
+
1
,
γ
,
2
−
δ
,
z
)
{\displaystyle HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=(1-z)^{(}1-\delta )*HeunG(a,q-(-1+\delta )*\gamma *a,\beta -\delta +1,\alpha -\delta +1,\gamma ,2-\delta ,z)}
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
(
1
−
z
/
a
)
(
−
α
−
β
+
γ
+
δ
)
∗
H
e
u
n
G
(
a
,
q
−
γ
∗
(
α
+
β
−
γ
−
δ
)
,
−
β
+
γ
+
δ
,
−
α
+
γ
+
δ
,
γ
,
δ
,
z
)
,
A
n
d
(
a
<>
0
)
]
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=(1-z/a)^{(}-\alpha -\beta +\gamma +\delta )*HeunG(a,q-\gamma *(\alpha +\beta -\gamma -\delta ),-\beta +\gamma +\delta ,-\alpha +\gamma +\delta ,\gamma ,\delta ,z),And(a<>0)]}
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
(
1
−
z
)
(
1
−
δ
)
∗
(
1
−
z
/
a
)
(
−
α
−
β
+
γ
+
δ
)
∗
H
e
u
n
G
(
a
,
q
−
γ
∗
(
(
−
1
+
δ
)
∗
a
+
α
+
β
−
γ
−
δ
)
,
−
β
+
γ
+
1
,
−
α
+
γ
+
1
,
γ
,
2
−
δ
,
z
)
,
A
n
d
(
a
<>
0
)
]
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=(1-z)^{(}1-\delta )*(1-z/a)^{(}-\alpha -\beta +\gamma +\delta )*HeunG(a,q-\gamma *((-1+\delta )*a+\alpha +\beta -\gamma -\delta ),-\beta +\gamma +1,-\alpha +\gamma +1,\gamma ,2-\delta ,z),And(a<>0)]}
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
H
e
u
n
G
(
1
/
a
,
q
/
a
,
α
,
β
,
γ
,
α
+
β
−
γ
−
δ
+
1
,
z
/
a
)
,
A
n
d
(
a
<>
0
)
]
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=HeunG(1/a,q/a,\alpha ,\beta ,\gamma ,\alpha +\beta -\gamma -\delta +1,z/a),And(a<>0)]}
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
(
1
−
z
)
(
−
α
)
∗
H
e
u
n
G
(
a
/
(
−
1
+
a
)
,
(
−
q
+
γ
∗
α
∗
a
)
/
(
−
1
+
a
)
,
α
,
α
−
δ
+
1
,
γ
,
α
−
β
+
1
,
z
/
(
z
−
1
)
)
,
A
n
d
(
a
<>
1
,
z
<>
1
)
]
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=(1-z)^{(}-\alpha )*HeunG(a/(-1+a),(-q+\gamma *\alpha *a)/(-1+a),\alpha ,\alpha -\delta +1,\gamma ,\alpha -\beta +1,z/(z-1)),And(a<>1,z<>1)]}
{\displaystyle }
超幾何函數關係
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
h
y
p
e
r
g
e
o
m
(
[
α
,
β
]
,
[
α
+
β
−
δ
+
1
]
,
z
)
,
A
n
d
(
a
=
0
,
q
=
0
)
]
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=hypergeom([\alpha ,\beta ],[\alpha +\beta -\delta +1],z),And(a=0,q=0)]}
[
H
e
u
n
G
(
a
,
q
,
α
,
β
,
γ
,
δ
,
z
)
=
h
y
p
e
r
g
e
o
m
(
[
α
,
β
]
,
[
γ
]
,
z
)
{\displaystyle [HeunG(a,q,\alpha ,\beta ,\gamma ,\delta ,z)=hypergeom([\alpha ,\beta ],[\gamma ],z)}
(
A
n
d
(
a
=
1
,
q
=
α
∗
β
)
,
A
n
d
(
q
=
α
∗
β
∗
a
,
δ
=
α
+
β
−
γ
+
1
)
)
]
{\displaystyle (And(a=1,q=\alpha *\beta ),And(q=\alpha *\beta *a,\delta =\alpha +\beta -\gamma +1))]}
HeunB函數
HeunB
HeunB(a,b,c,d,z)是下列雙合流方程的解
y
z
z
−
(
α
+
2
∗
z
+
z
2
∗
α
−
2
∗
z
3
)
(
z
+
1
)
2
/
(
z
−
1
)
2
∗
y
z
+
(
δ
+
(
2
∗
α
+
γ
)
∗
z
+
β
∗
z
2
)
(
z
−
1
)
3
/
(
z
+
1
)
3
∗
y
(
z
)
;
{\displaystyle y_{z}z-{\frac {(\alpha +2*z+z^{2}*\alpha -2*z^{3})}{(z+1)^{2}/(z-1)^{2}}}*y_{z}+{\frac {(\delta +(2*\alpha +\gamma )*z+\beta *z^{2})}{(z-1)^{3}/(z+1)^{3}*y(z)}};}
HeunC函數
HeunC
HeunC(a,b,c,d,z)是下列微分方程的解
y
z
z
−
(
−
z
2
∗
a
+
(
−
2
−
b
−
c
+
a
)
∗
z
+
b
+
1
)
∗
y
z
)
(
z
∗
(
z
−
1
)
)
−
(
1
/
2
)
∗
(
(
(
−
b
−
c
−
2
)
∗
a
−
2
∗
d
)
∗
z
+
(
b
+
1
)
∗
a
+
(
−
c
−
1
)
∗
b
−
c
−
2
∗
e
)
∗
y
(
z
∗
(
z
−
1
)
)
{\displaystyle y_{z}z-{\frac {(-z^{2}*a+(-2-b-c+a)*z+b+1)*y_{z})}{(z*(z-1))}}-{\frac {(1/2)*(((-b-c-2)*a-2*d)*z+(b+1)*a+(-c-1)*b-c-2*e)*y}{(z*(z-1))}}}
關係式
[
H
e
u
n
C
(
a
,
b
,
c
,
d
,
e
,
z
)
=
(
1
−
z
)
(
−
c
)
∗
H
e
u
n
C
(
a
,
b
,
−
c
,
d
,
e
,
z
)
,
A
n
d
(
b
::
(
N
o
t
(
i
n
t
e
g
e
r
)
)
,
a
b
s
(
z
)
<
1
)
]
{\displaystyle [HeunC(a,b,c,d,e,z)=(1-z)^{(}-c)*HeunC(a,b,-c,d,e,z),And(b::(Not(integer)),abs(z)<1)]}
[
H
e
u
n
C
(
a
,
b
,
c
,
d
,
e
,
z
)
=
e
x
p
(
−
z
∗
a
)
∗
H
e
u
n
C
(
−
a
,
b
,
c
,
d
,
e
,
z
)
,
A
n
d
(
b
::
(
N
o
t
(
i
n
t
e
g
e
r
)
)
,
a
b
s
(
z
)
<
1
)
]
{\displaystyle [HeunC(a,b,c,d,e,z)=exp(-z*a)*HeunC(-a,b,c,d,e,z),And(b::(Not(integer)),abs(z)<1)]}
HeunD函數
HeunD
HeunD(a,b,c,d,z)函數是下列微分方程的解
y
z
z
−
(
−
2
∗
z
5
+
4
∗
z
3
+
z
4
∗
a
−
2
∗
z
−
a
)
∗
y
z
)
(
(
z
−
1
)
3
∗
(
z
+
1
)
3
)
−
(
−
z
2
∗
b
+
(
−
c
−
2
∗
a
)
∗
z
−
d
)
∗
y
(
(
z
−
1
)
3
∗
(
z
+
1
)
3
)
{\displaystyle y_{z}z-{\frac {(-2*z^{5}+4*z^{3}+z^{4}*a-2*z-a)*y_{z})}{((z-1)^{3}*(z+1)^{3})}}-{\frac {(-z^{2}*b+(-c-2*a)*z-d)*y}{((z-1)^{3}*(z+1)^{3})}}}
關係式
[
H
e
u
n
D
(
a
,
b
,
c
,
d
,
z
)
=
H
e
u
n
D
(
−
a
,
−
d
,
−
c
,
−
b
,
1
/
z
)
]
{\displaystyle [HeunD(a,b,c,d,z)=HeunD(-a,-d,-c,-b,1/z)]}
HeunT函數
HeunT
HeunT(a,b,c,z)函數是下列微分方程的解
y
z
z
−
(
3
∗
z
2
+
c
)
∗
y
z
−
(
(
3
−
b
)
∗
z
−
a
)
∗
y
{\displaystyle y_{z}z-(3*z^{2}+c)*y_{z}-((3-b)*z-a)*y}
關係式
[
H
e
u
n
T
(
a
,
b
,
c
,
z
)
=
H
e
u
n
T
(
j
∗
a
,
b
,
j
2
∗
c
,
j
∗
z
)
,
A
n
d
(
j
3
=
1
)
]
{\displaystyle [HeunT(a,b,c,z)=HeunT(j*a,b,j^{2}*c,j*z),And(j^{3}=1)]}
[
H
e
u
n
T
(
a
,
b
,
c
,
z
)
=
H
e
u
n
T
(
a
,
−
b
,
c
,
−
z
)
∗
e
x
p
(
z
3
)
,
A
n
d
(
c
=
0
)
]
{\displaystyle [HeunT(a,b,c,z)=HeunT(a,-b,c,-z)*exp(z^{3}),And(c=0)]}
參考文獻
Forsyth, Andrew Russell, Theory of differential equations. 4. Ordinary linear equations , New York: Dover Publications : 158, 1959 [1906], MR 0123757
Heun, Karl, Zur Theorie der Riemann'schen Functionen zweiter Ordnung mit vier Verzweigungspunkten , Mathematische Annalen, 1889, 33 : 161, doi:10.1007/bf01443849
Maier, Robert S., The 192 solutions of the Heun equation, Mathematics of Computation , 2007, 76 (258): 811–843, MR 2291838 , arXiv:math/0408317 , doi:10.1090/S0025-5718-06-01939-9
Ronveaux, A. (編), Heun's differential equations, Oxford Science Publications, The Clarendon Press Oxford University Press, 1995, ISBN 978-0-19-859695-0 , MR 1392976
Sleeman, B. D.; Kuznetzov, V. B., Heun functions , Olver, Frank W. J. ; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (編), NIST Handbook of Mathematical Functions , Cambridge University Press, 2010, ISBN 978-0521192255 , MR 2723248
Valent, Galliano, Heun functions versus elliptic functions, Difference equations, special functions and orthogonal polynomials, World Sci. Publ., Hackensack, NJ: 664–686, 2007, MR 2451210 , arXiv:math-ph/0512006 , doi:10.1142/9789812770752_0057