新元古代氧化事件

新元古代氧化事件英語Neoproterozoic Oxygenation Event,簡稱NOE)也稱「第二次大氧化事件」,指地球地質歷史上在約8.5億至5.4億年前的元古宙新元古代期間地球大氣層海洋氧氣含量劇增的一段時期[1]。這次氧化事件發生在歷時元古宙大半的無聊十億年結束之後,是氧氣地質歷史上的第二次劇增,大氣和海洋含氧從不足現今水平的0.1%上升到約10%(也有說法認為可能達到了現今水平)[2]。與太古宙末期的大氧化事件不同,目前尚且未知新元古代氧化事件是一個全球同時發生的事件還是個互無關係多地不同時段發生的事件[3]

氧化的證據

碳同位素

在8.5億至7.2億年前的拉伸紀晚期,海洋沉積物記錄展現了非常顯著的同位素(δ13C)正偏,被認為與真核浮游生物演化輻射碳截存息息相關,相應代表了這段時期產氧量的劇增[4]。進一步的碳同位素正偏在成冰紀也有發生[5]。雖然拉伸紀晚期也有數次與溫暖期相應的碳同位素負偏,碳同位素的偏移在整個新元古代總體呈現明顯的正向變化[1]

氮同位素

從四個新元古代盆地採集的7.5億至5.8億年前的海洋沉積物同位素(δ15N)數據顯示當時的氮同位素比例與現今相似,極差在-4%~+11%之間,在成冰紀—埃迪卡拉紀邊界也並沒有顯著變化,說明當時的全球海洋內氧氣已經非常普遍[6]

硫同位素

海水中的同位素(δ34S)值在新元古代大部分時期都逐漸增加(其中隨着冰期有顯著下滑)[7],但在埃迪卡拉紀出現顯著正偏,相應的黃鐵礦中的同位素則下跌。硫酸鹽硫化物之間的高分離率說明水柱中硫酸鹽的含量增加,代表黃鐵礦與氧氣的反應量增加[8]。此外,基因證據展示不依賴光合作用的硫降解微生物在新元古代發生了演化輻射,進一步將海洋中更重的同位素硫化物消耗[9]。因為這些微生物需要大量氧氣才能存活,所以學界認為新元古代必須有能將氧氣濃度上升到5~18%的氧化事件才能構成這些微生物多樣化的先決條件[10]

鍶同位素

同位素(δ13C)在陸地風化二氧化碳釋氣保持穩定或上升的情況下能可靠的展現淨初級生產和氧氣的變化,因為任何二氧化碳供應的減少都會因為生物偏向消耗碳-12而導致同位素的正偏[4]鍶-87鍶-86比例被用作判定大陸風化和海洋養分供應之間相對貢獻的決定因素[1],比例提升意味着大陸風化的加劇和高氧化度,而新元古代到寒武紀之間時期的同位素數據恰好符合這種判斷[11]

鉻同位素

地表上從三價到四價鉻的氧化會導致鉻的同位素的分離,而四價鉻在大自然中通常以鉻酸鹽重鉻酸鹽的形態出現而且有更高的δ53Cr值或更大的鉻-53/鉻-52比值細菌對四價鉻的還原則通常與鉻同位素的負偏相關。在河流氧化鉻沖入海洋後,四價鉻會被海洋微生物還原成三價鉻,隨後將海里的亞鐵氧化成三價鐵並沉積為氫氧化鐵。這意味着富含三價鐵的海洋沉積物中的鉻同位素比例可以很精確的反應沉積初期的海水鉻同位素情況。因為三價鉻到四價鉻的氧化只有在二氧化錳催化作用下才能有效發生,而二氧化錳只在高氧逸度的條件下穩定存在,δ53Cr的正偏意味着大氣含氧的增加。在新元古代沉積的條狀鐵層持續展示了很高的δ53Cr正偏值(0.9~4.9%),說明這段時期大氣的氧化程度較高[12][4]。氧化鉻的循環大概始於8億年前,說明氧氣量的增加要遠早於成冰紀大冰期[13]。鉻同位素還展示了成冰紀間冰期時大氣和海洋的氧化較慢且有限,在整個新元古代氧化事件中形成了一個低谷期[14]

鉬同位素

同位素(δ98Mo)在埃迪卡拉紀晚期的水平要比成冰紀和埃迪卡拉紀早中期稍高,而鉬同位素值顯示埃迪卡拉紀晚期海洋的氧化程度與中生代大洋缺氧事件時相當[15]

鈾同位素

鈾的同位素——特別是鈾-238——通常被用來測量海水氧化的變化。新元古代大部分時期極低的鈾-238值(δ238U)顯示當時逐步提升的氧化度曾被暫時的硫化缺氧事件打斷[16]。在埃迪卡拉紀早期,鈾同位素的變化與輕碳同位素的增加相應[17]

起因

固氮增加

在「無聊十億年」期間,海洋的生產力相比新元古代和之後的顯生宙都非常低。然而能固氮微生物出現並迅速擴張佔領浮游生物生態位後,成冰紀時期氮循環發生了很大改變[18],也使得自養生物初級生產能力大大提高。

白晝延長

月球潮汐力導致地球自轉逐漸減慢,使得白晝加長,這可能使得產氧量增高,因為實驗發現藍綠菌的生產率在更長時間的連續日照下更高[19]

碳截存

新元古代具有缺氧深水的大型湖泊往往是固碳藻類大量長期沉積之處,因此是碳截存理想場所。藻類殘骸的碳因為沒有氧氣參與降解,通常會被存封在沉積岩內最終變成天然氣石油二氧化碳的移除一方面增加了大氣氧氣的佔比,一方面溫室效應減少造成的降溫也會增加水中氧氣的溶解度[20]

磷移除

真核生物的進一步多樣化被提議是深海氧化增加的原因之一,其中的移除是重要一環。大型多細胞生物演化導致了更多的有機物碎屑沉積到海床(即所謂的「海洋雪」),在底棲濾食生物(比如領鞭毛蟲和由其演化而來的多孔動物)的作用下,將氧氣需求擴展至深水層,導致了磷循環正反饋,最終使得整個海洋的初級生產加速。更多的磷周轉使得真核生物的繁衍和演化進一步加速,特別是自養藻類的光合作用得到了加強[21]

後果

冰室效應

藍綠菌真核光合自養者(主要是綠藻紅藻)的繁盛使得碳截存顯著加速,加上當時因為羅迪尼亞超大陸的分裂釋放的洪流玄武岩加速了矽酸鹽風化[22],被認為引發了成冰紀的斯圖爾特冰期馬里諾冰期英語Marinoan glaciation[18]

生物多樣性

在「無聊十億年」末期的拉伸紀,最早的多細胞生物出現並在深海的「氧氣綠洲」中繁衍,這些富氧水區相當於真核生物早期演化的搖籃[23]。但是這時期持續的整體硫化缺氧的環境使得真核生物的多樣性仍然很低[24]。在埃迪卡拉紀,海洋的氧化情況大大改善[25],特別是噶斯奇厄斯冰期英語Gaskiers glaciation之前的時期有着海洋氧氣顯著提升的地質證據[26]。氧氣成分的增加被一些研究者認為是多細胞生物的快速多樣化的基礎[27],也是結構更複雜的埃迪卡拉生物群得以爆發的前提[28][29][30]。因為深水區水溫更冷所以溶解的氧氣更濃,因此後生動物起初都局限於海底生物界,直到海洋氧氣持續提升後才開始擴展到更加溫暖的淺海區域[31]

另見

參考

  1. ^ 1.0 1.1 1.2 Och, Lawrence M.; Shields-Zhou, Graham A. The Neoproterozoic oxygenation event: Environmental perturbations and biogeochemical cycling. Earth-Science Reviews. January 2012, 110 (1–4): 26–57 [10 November 2022]. Bibcode:2012ESRv..110...26O. doi:10.1016/j.earscirev.2011.09.004. 
  2. ^ Stockey, Richard G.; Cole, Devon B.; Farrell, Una C.; Agić, Heda; Boag, Thomas H.; et al. Sustained increases in atmospheric oxygen and marine productivity in the Neoproterozoic and Palaeozoic eras. Nature Geoscience. 2024-07-02, 17 (7): 667–674 [2024-09-09]. doi:10.1038/s41561-024-01479-1. 
  3. ^ Stern, Robert J.; Mukherjee, Sumit K.; Miller, Nathan R.; Ali, Kamal; Johnson, Peter R. ~750 Ma banded iron formation from the Arabian-Nubian Shield—Implications for understanding neoproterozoic tectonics, volcanism, and climate change. Precambrian Research. December 2013, 239: 79–94 [20 December 2022]. Bibcode:2013PreR..239...79S. doi:10.1016/j.precamres.2013.07.015. 
  4. ^ 4.0 4.1 4.2 Shields-Zhou, Graham A.; Och, Lawrence M. The case for a Neoproterozoic Oxygenation Event: Geochemical evidence and biological consequences (PDF). GSA Today. March 2011, 21 (3): 4–11 [10 November 2022]. Bibcode:2011GSAT...21c...4S. doi:10.1130/GSATG102A.1. 
  5. ^ Riding, Robert. Cyanobacterial calcification, carbon dioxide concentrating mechanisms, and Proterozoic–Cambrian changes in atmospheric composition. Geobiology. 17 November 2006, 4 (4): 299–316 [10 November 2022]. Bibcode:2006Gbio....4..299R. S2CID 131564268. doi:10.1111/j.1472-4669.2006.00087.x. 
  6. ^ Ader, Magali; Sansjofre, Pierre; Halverson, Galen P.; Busigny, Vincent; Trindade, Ricardo I. F.; Kunzmann, Marcus; Nogueira, Afonso C. R. Ocean redox structure across the Late Neoproterozoic Oxygenation Event: A nitrogen isotope perspective. Earth and Planetary Science Letters. 15 June 2014, 396: 1–13 [10 November 2022]. Bibcode:2014E&PSL.396....1A. doi:10.1016/j.epsl.2014.03.042. 
  7. ^ Hurtgen, Matthew T.; Arthur, Michael A.; Halverson, Galen P. Neoproterozoic sulfur isotopes, the evolution of microbial sulfur species, and the burial efficiency of sulfide as sedimentary pyrite. Geology. 1 January 2005, 33 (1): 41–44 [10 November 2022]. Bibcode:2005Geo....33...41H. doi:10.1130/G20923.1. 
  8. ^ Halverson, Galen P.; Hurtgen, Matthew T. Ediacaran growth of the marine sulfate reservoir. Earth and Planetary Science Letters. 15 November 2007, 263 (1–2): 32–44 [10 November 2022]. Bibcode:2007E&PSL.263...32H. doi:10.1016/j.epsl.2007.08.022. 
  9. ^ Fike, D. A.; Grotzinger, J. P.; Pratt, L. M.; Summons, R. E. Oxidation of the Ediacaran Ocean. Nature. 7 December 2006, 444 (7120): 744–747 [10 November 2022]. Bibcode:2006Natur.444..744F. PMID 17151665. S2CID 4337003. doi:10.1038/nature05345. 
  10. ^ Canfield, Donald Eugene; Teske, Andreas. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies. Nature. 11 July 1996, 382 (6587): 127–132 [10 November 2022]. Bibcode:1996Natur.382..127C. PMID 11536736. S2CID 4360682. doi:10.1038/382127a0. 
  11. ^ Kennedy, Martin J.; Droser, Mary L.; Mayer, Lawrence M.; Pevear, David; Mrofka, David. Late Precambrian Oxygenation; Inception of the Clay Mineral Factory. Science. 10 March 2006, 311 (5766): 1446–1449 [10 November 2022]. Bibcode:2006Sci...311.1446K. PMID 16456036. S2CID 45140929. doi:10.1126/science.1118929. 
  12. ^ Frei, Robert; Gaucher, Claudio; Poulton, Simon W.; Canfield, Donald Eugene. Fluctuations in Precambrian atmospheric oxygenation recorded by chromium isotopes. Nature. 10 September 2009, 461 (7261): 250–253 [10 November 2022]. Bibcode:2009Natur.461..250F. PMID 19741707. S2CID 4373201. doi:10.1038/nature08266. 
  13. ^ Casado, Juan. A Review of the Neoproterozoic Global Glaciations and a Biotic Cause of Them. Earth Systems and Environment. 17 October 2021, 5 (4): 811–824. Bibcode:2021ESE.....5..811C. doi:10.1007/s41748-021-00258-x . 
  14. ^ Xu, Lingang; Frank, Anja B.; Lehmann, Bernd; Zhu, Jianming; Mao, Jingwen; Ju, Yongze; Frei, Robert. Subtle Cr isotope signals track the variably anoxic Cryogenian interglacial period with voluminous manganese accumulation and decrease in biodiversity. Scientific Reports. 21 October 2019, 9 (1): 15056. Bibcode:2019NatSR...915056X. PMC 6803686 . PMID 31636318. doi:10.1038/s41598-019-51495-0. 
  15. ^ Tan, Zhaozhao; Wu, Jinxiang; Jia, Wanglu; Li, Jie; Kendall, Brian; Song, Jianzhong; Peng, Ping』an. Molybdenum isotope evidence from restricted-basin mudstones for an intermediate extent of oxygenation in the late Ediacaran ocean. Chemical Geology. 20 April 2023, 623: 121410 [28 September 2023]. Bibcode:2023ChGeo.623l1410T. ISSN 0009-2541. doi:10.1016/j.chemgeo.2023.121410. 
  16. ^ Clarkson, Matthew O.; Sweere, Tim C.; Chiu, Chun Fung; Hennekam, Rick; Bowyer, Tim; Wood, Rachel A. Environmental controls on very high δ238U values in reducing sediments: Implications for Neoproterozoic seawater records. Earth-Science Reviews. February 2023, 237 [17 June 2023]. doi:10.1016/j.earscirev.2022.104306. hdl:20.500.11850/594625 . 
  17. ^ Chen, Bo; Hu, Chunlin; Mills, Benjamin J. W.; He, Tianchen; Andersen, Morten B.; Chen, Xi; Liu, Pengju; Lu, Miao; Newton, Robert J.; Poulton, Simon W.; Shields, Graham A.; Zhu, Maoyan. A short-lived oxidation event during the early Ediacaran and delayed oxygenation of the Proterozoic ocean. Earth and Planetary Science Letters. 1 January 2022, 577 [17 June 2023]. Bibcode:2022E&PSL.57717274C. doi:10.1016/j.epsl.2021.117274. 
  18. ^ 18.0 18.1 Sánchez-Baracaldo, Patricia; Ridgwell, Andy; Raven, John A. A Neoproterozoic Transition in the Marine Nitrogen Cycle. Current Biology. 17 March 2014, 24 (6): 652–657. Bibcode:2014CBio...24..652S. PMID 24583016. S2CID 16756351. doi:10.1016/j.cub.2014.01.041 . 
  19. ^ Klatt, J. M.; Chennu, A.; Arbic, B. K.; Biddanda, B. A.; Dick, G. J. Possible link between Earth's rotation rate and oxygenation. Nature Geoscience. 2 August 2021, 14 (8): 564–570. Bibcode:2021NatGe..14..564K. S2CID 236780731. doi:10.1038/s41561-021-00784-3 . 
  20. ^ Spinks, Samuel C.; Parnell, John; Bowden, Stephen A.; Taylor, Ross A.D.; Maclean, Màiri E. Enhanced organic carbon burial in large Proterozoic lakes: Implications for atmospheric oxygenation. Precambrian Research. December 2014, 255: 202–215 [18 July 2024]. doi:10.1016/j.precamres.2014.09.026 –透過Elsevier Science Direct (英語). 
  21. ^ Lenton, Timothy M.; Boyle, Richard A.; Poulton, Simon W.; Shields-Zhou, Graham A.; Butterfield, Nicholas J. Co-evolution of eukaryotes and ocean oxygenation in the Neoproterozoic era. Nature Geoscience. 9 March 2014, 7 (4): 257–265 [10 November 2022]. Bibcode:2014NatGe...7..257L. doi:10.1038/ngeo2108. hdl:10871/15316 . 
  22. ^ Cox, Grant M.; Halverson, Galen P.; Stevenson, Ross K.; Vokaty, Michelle; Poirier, André; Kunzmann, Marcus; Li, Zheng-Xiang; Denyszyn, Steven W.; Strauss, Justin V.; Macdonald, Francis A. Continental flood basalt weathering as a trigger for Neoproterozoic Snowball Earth. Earth and Planetary Science Letters. 15 July 2016, 446: 89–99. Bibcode:2016E&PSL.446...89C. doi:10.1016/j.epsl.2016.04.016 . 
  23. ^ Wang, Haiyang; Liu, Aoran; Li, Chao; Feng, Qinglai; Tang, Shida; Cheng, Meng; Algeo, Thomas J. A benthic oxygen oasis in the early Neoproterozoic ocean. Precambrian Research. April 2021, 355: 1–11 [29 April 2023]. Bibcode:2021PreR..35506085W. doi:10.1016/j.precamres.2020.106085. 
  24. ^ Stacey, Jack; Hood, Ashleigh v.S.; Wallace, Malcolm W. Persistent late Tonian shallow marine anoxia and euxinia. Precambrian Research. October 2023, 397: 107207 [18 July 2024]. doi:10.1016/j.precamres.2023.107207  –透過Elsevier Science Direct (英語). 
  25. ^ Álvaro, J. Javier; Shields-Zhou, Graham A.; Ahlberg, Per; Jensen, Sören; Palacios, Teodoro. Ediacaran–Cambrian phosphorites from the western margins of Gondwana and Baltica. Sedimentology. 23 May 2015, 63 (2): 350–377 [10 November 2022]. S2CID 128529800. doi:10.1111/sed.12217. 
  26. ^ Macdonald, Francis A.; Strauss, Justin V.; Sperling, Erik A.; Halverson, Galen P.; Narbonne, Guy M.; Johnston, David T.; Kunzmann, Marcus; Schrag, Daniel P.; Higgins, John A. The stratigraphic relationship between the Shuram carbon isotope excursion, the oxygenation of Neoproterozoic oceans, and the first appearance of the Ediacara biota and bilaterian trace fossils in northwestern Canada. Chemical Geology. 20 December 2013, 362: 250–272 [10 November 2022]. Bibcode:2013ChGeo.362..250M. S2CID 10374332. doi:10.1016/j.chemgeo.2013.05.032. 
  27. ^ Fan, Haifeng; Zhu, Xiangkun; Wen, Hanjie; Yan, Bin; Li, Jin; Feng, Lianjun. Oxygenation of Ediacaran Ocean recorded by iron isotopes. Geochimica et Cosmochimica Acta. 1 September 2014, 140: 80–94 [10 November 2022]. Bibcode:2014GeCoA.140...80F. doi:10.1016/j.gca.2014.05.029. 
  28. ^ Canfield, Donald Eugene; Poulton, Simon W.; Narbonne, Guy M. Late-Neoproterozoic Deep-Ocean Oxygenation and the Rise of Animal Life. Science. 5 January 2007, 315 (5808): 92–95. Bibcode:2007Sci...315...92C. PMID 17158290. S2CID 24761414. doi:10.1126/science.1135013 . 
  29. ^ Evans, Scott D.; Diamond, Charles W.; Droser, Mary L.; Lyons, Timothy W. Dynamic oxygen and coupled biological and ecological innovation during the second wave of the Ediacara Biota. Emerging Topics in Life Sciences. 13 July 2018, 2 (2): 223–233 [10 November 2022]. PMID 32412611. S2CID 134889828. doi:10.1042/ETLS20170148. 
  30. ^ Pehr, Kelden; Love, Gordon D.; Kuznetsov, Anton; Podkovyrov, Victor; Junium, Christopher K.; Shumlyanskyy, Leonid; Sokur, Tetyana; Bekker, Andrey. Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nature Communications. 4 May 2018, 9 (1): 1807. Bibcode:2018NatCo...9.1807P. PMC 5935690 . PMID 29728614. doi:10.1038/s41467-018-04195-8. 
  31. ^ Boag, Thomas H.; Stockey, Richard G.; Elder, Leanne E.; Hull, Pincelli M.; Sperling, Erik A. Oxygen, temperature and the deep-marine stenothermal cradle of Ediacaran evolution. Proceedings of the Royal Society B: Biological Sciences. 12 December 2018, 285 (1893): 1–10. PMC 6304043 . PMID 30963899. doi:10.1098/rspb.2018.1724.