集成電路
集成電路(英語:integrated circuit, IC,中國大陸、香港作集成電路,台灣作積體電路),指的是在電子學中是一種將電路(主要包括半導體裝置,也包括被動元件等)集中製造在半導體晶圓表面上的小型化方式。
「integrated circuit」的各地常用譯名 | |
---|---|
中國大陸 | 集成電路 |
臺灣 | 積體電路 |
港澳 | 集成電路 |
「microchip」的各地常用譯名 | |
---|---|
中國大陸 | 微芯片 |
臺灣 | 微晶片 |
港澳 | 微芯片 |
前述將電路製造在半導體晶片表面上的集成電路,又稱薄膜(thin-film)集成電路。另有一種厚膜(thick-film)混成積體電路(hybrid integrated circuit)[1][註 1]是由獨立半導體裝置和被動元件整合到基板或線路板所構成的小型化電路[註 2]。
別稱
集成電路的別稱非常多,在中文和英文裏可直接稱它為「芯片(英語:chip,中國大陸、香港作芯片,台灣作晶片)」,或是「集成電路(英語:integrated circuit)」,縮寫為「IC」;也可用「微芯片(microchip)」、「微電路(microcircuit)」等用詞稱呼。
介紹
電晶體發明並大量生產之後,各式固態半導體元件如二極體、電晶體等大量使用,取代了真空管在電路中的功能與角色。到了20世紀中後期半導體製造技術進步,便使集成電路成為可能。相對於手工組裝電路使用個別的分立電子元件,集成電路可以把很大數量的微電晶體整合到一個小晶片,是一個巨大的進步。集成電路憑藉標準化、可大規模生產、高可靠性、電路設計可模組化等特點,實現了對離散電晶體的取代。
從1949年到1957年,維爾納·雅各比、傑佛理·杜莫、西德尼·達林頓、樽井康夫都開發出了原型,現代的集成電路則是由傑克·基爾比在1958年發明,並因此榮獲2000年諾貝爾物理獎。同時間發展出近代實用的集成電路的羅伯特·諾伊斯,卻早在1990年就過世。
集成電路對於離散電晶體有兩個主要優勢:成本和效能。成本低是由於晶片把所有的元件通過照相平版技術,作為一個單位印刷,而不是在一個時間只製作一個電晶體。效能高是由於元件快速開關,消耗更低能量,因為元件很小且彼此靠近。2006年,晶片面積從幾平方毫米到350 mm²,每mm²可以達到一百萬個電晶體。
第一個集成電路雛形是由傑克·基爾比於1958年完成的,其中包括一個雙極性電晶體,三個電阻和一個電容器,相較於現今科技的尺寸來講,體積相當龐大。
根據一個晶片上整合的微電子元件的數量,集成電路可以分為以下幾類:
- 小型集成電路(SSI, Small Scale Integration)邏輯門10個以下或 電晶體100個以下。
- 中型集成電路(MSI, Medium Scale Integration)邏輯門11~100個或 電晶體101~1k個。
- 大型積體電路(LSI, Large Scale Integration)邏輯門101~1k個或 電晶體1,001~10k個。
- 超大型積體電路(VLSI, Very Large Scale Integration)邏輯門1,001~10k個或 電晶體10,001~100k個。
- 極大型積體電路(ULSI, Ultra Large Scale Integration)邏輯門10,001~1M個或 電晶體100,001~10M個。
- 巨大規模集成電路(GSI, Giga Scale Integration)邏輯門1,000,001個以上或電晶體10,000,001個以上。
發展
最先進的集成電路是微處理器或多核處理器的核心,可以控制一切電路,從數字微波爐、手機到電腦。記憶體和特定應用集成電路是其他集成電路家族的例子,對於現代資訊社會非常重要。雖然設計開發一個複雜集成電路的成本非常高,但是當成本分散到數以百萬計的產品上時,每個集成電路的成本便能最小化。集成電路的效能很高,因為小尺寸帶來短路徑,使得低功率邏輯電路可以在快速開關速度應用。
這些年來,集成電路持續向更小的外型尺寸發展,使得每個晶片可以封裝更多的電路。這樣增加了每單位面積容量,可以降低成本和增加功能-見摩爾定律,集成電路中的電晶體數量,每1.5年增加一倍。總之,隨着外形尺寸縮小,幾乎所有的指標改善了-單位成本和開關功率消耗下降,速度提高。但是,整合納米級別裝置的IC不是沒有問題,主要是洩漏電流。因此,對於終端使用者的速度和功率消耗增加非常明顯,製造商面臨使用更好幾何學的尖銳挑戰。這個過程和在未來幾年所期望的進步,在半導體國際技術路線圖中有很好的描述。
普及
僅僅在其開發後半個世紀,集成電路變得無處不在,電腦、手機和其他數碼電器成為現代社會結構不可缺少的一部分。這是因為,現代計算、交流、製造和交通系統,包括互聯網,全都依賴於集成電路的存在。甚至有很多學者認為集成電路帶來的數碼革命是人類歷史中最重要的事件。IC的成熟將會帶來科技的大躍進,不論是在設計的技術上,或是半導體的製程突破,兩者都是息息相關。
分類
集成電路的分類方法很多,依照電路屬模擬或數碼,可以分為:模擬集成電路、數碼集成電路和混合訊號積體電路(模擬和數碼在一個晶片上)。
數碼集成電路可以包含任何東西,在幾平方毫米上有從幾千到百萬的邏輯門、正反器、多工器和其他電路。這些電路的小尺寸使得與板級整合相比,有更高速度,更低功耗(參見低功耗設計)並降低了製造成本。這些數碼IC,以微處理器、數碼訊號處理器和微控制器為代表,工作中使用二進制,處理1和0訊號。
模擬集成電路有,例如感測器、電源控制電路和運放,處理模擬訊號。完成放大、濾波、解調、混頻的功能等。通過使用專家所設計、具有良好特性的模擬集成電路,減輕了電路設計師的重擔,不需凡事再由基礎的一個個電晶體處設計起。
集成電路可以把模擬和數碼電路整合在一個單晶片上,以做出如模擬數碼轉換器和數碼模擬轉換器等元件。這種電路提供更小的尺寸和更低的成本,但是對於訊號衝突必須小心。
製造
從1930年代開始,元素周期表化學元素中的半導體被諸如貝爾實驗室威廉·肖克利(William Shockley)的研究者認為是最適合做固態真空管的原料。這些原料在1940至50年代被系統地研究,從氧化銅開始,然後到鍺,再到矽。現今,單晶矽是集成電路的主要基層,儘管元素週期表中的一些III-V價化合物(比如砷化鎵)有特殊用途,例如發光二極體、激光、太陽能電池和最高速集成電路。發現無缺陷晶體的製造方法需要數十年的時間。
半導體集成電路製程,包括以下步驟,並重複使用:
使用單晶矽晶圓(或III-V族,如砷化鎵)用作基層,然後使用微影、摻雜、CMP等技術製成MOSFET或BJT等元件,再利用薄膜和CMP技術製成導線,如此便完成晶片製作。因產品效能需求及成本考量,導線可分為鋁製程(以濺鍍為主)和銅製程(以電鍍為主參見Damascene)。[2][3][4]主要的製程技術可以分為以下幾大類:黃光微影、蝕刻、擴散、薄膜、平坦化製成、金屬化製成。
IC由很多重疊的層組成,每層由影像技術定義,通常用不同的顏色表示。一些層標明在哪裏不同的摻雜劑擴散進基層(成為擴散層),一些定義哪裏額外的離子灌輸(灌輸層),一些定義導體(多晶矽或金屬層),一些定義傳導層之間的連接(過孔或接觸層)。所有的元件由這些層的特定組合構成。
- 在一個自排列(CMOS)過程中,所有門層(多晶矽或金屬)穿過擴散層的地方形成電晶體。
- 電阻結構,電阻結構的長寬比,結合表面電阻係數,決定電阻。
- 電容結構,由於尺寸限制,在IC上只能產生很小的電容。
- 更為少見的電感結構,可以製作晶片載電感或由迴旋器模擬。
因為CMOS裝置只引導電流在邏輯門之間轉換,CMOS裝置比雙極型元件(如雙極性電晶體)消耗的電流少很多,也是現在主流的元件。透過電路的設計,將多顆的電晶體管畫在矽晶圓上,就可以畫出不同作用的集成電路。
隨機存取記憶體是最常見類型的集成電路,所以密度最高的裝置是記憶體,但即使是微處理器上也有記憶體。儘管結構非常複雜-幾十年來晶片寬度一直減少-但集成電路的層依然比寬度薄很多。元件層的製作非常像照相過程。雖然可見光譜中的光波不能用來曝光元件層,因為他們太大了。高頻光子(通常是紫外線)被用來創造每層的圖案。因為每個特徵都非常小,對於一個正在除錯製造過程的過程工程師來說,電子顯微鏡是必要工具。
在使用自動測試裝置(ATE)包裝前,每個裝置都要進行測試。測試過程稱為晶圓測試或晶圓探通。晶圓被切割成矩形塊,每個被稱為晶粒(「die」)。每個好的die被焊在「pads」上的鋁線或金線,連接到封裝內,pads通常在die的邊上。封裝之後,裝置在晶圓探通中使用的相同或相似的ATE上進行終檢。測試成本可以達到低成本產品的製造成本的25%,但是對於低產出,大型和/或高成本的裝置,可以忽略不計。
在2005年,一個製造廠(通常稱為半導體工廠,常簡稱fab,指fabrication facility)建設費用要超過10億美元,因為大部分操作是自動化的。
封裝
最早的集成電路使用陶瓷扁平封裝,這種封裝很多年來因為可靠性和小尺寸繼續被軍方使用。商用電路封裝很快轉變到雙列直插封裝,簡單來說,即開始是陶瓷,之後是塑料。1980年代,VLSI電路的針腳超過了DIP封裝的應用限制,最後導致插針網格陣列和晶片載體的出現。
表面黏著技術在1980年代初期出現,該年代後期開始流行。它的針腳使用更細的間距,引腳形狀為海鷗翼型或J型。以Small-Outline Integrated Circuit(SOIC)為例,比相等的DIP面積少30-50%,厚度少70%。這種封裝在兩個長邊有海鷗翼型引腳突出,引腳間距為0.05英寸。
Small-Outline Integrated Circuit(SOIC)和PLCC封裝。1990年代,儘管PGA封裝依然經常用於高端微處理器。PQFP和thin small-outline package(TSOP)成為高引腳數裝置的通常封裝。Intel和AMD的高端微處理器現在從PGA(Pine Grid Array)封裝轉到了平面網格陣列封裝(Land Grid Array,LGA)封裝。
球柵陣列封裝封裝從1970年代開始出現,1990年代開發了比其他封裝有更多管腳數的覆晶球柵陣列封裝封裝。在FCBGA封裝中,晶粒被上下翻轉(flipped)安裝,通過與PCB相似的基層而不是線與封裝上的焊球連接。FCBGA封裝使得輸入輸出訊號陣列(稱為I/O區域)分佈在整個晶片的表面,而不是限制於晶片的外圍。
如今的市場,封裝採用技術與特性已經非常複雜,也已經是獨立出來的一環,封裝的技術也會影響到產品的質素及良率。
註釋
參考文獻
- 參照
延伸閱讀
- The first monolithic integrated circuits
- Who invented the IC? (頁面存檔備份,存於互聯網檔案館)
- Baker, R. J. CMOS: Circuit Design, Layout, and Simulation, Third Edition. Wiley-IEEE. 2010. ISBN 978-0-470-88132-3. http://cmosedu.com/ (頁面存檔備份,存於互聯網檔案館)
- Hodges, David; Jackson, Horace; Saleh, Resve. Analysis and Design of Digital Integrated Circuits. McGraw-Hill Science/Engineering/Math. 2003. ISBN 978-0-07-228365-5.
- Klar, Heinrich; Noll, Tobias. Integrierte Digitale Schaltungen: Vom Transistor zur optimierten Logikschaltung. Springer Vieweg. 2015. ISBN 978-3-540-40600-6.
- Rabaey, J. M.; Chandrakasan, A.; Nikolic, B. Digital Integrated Circuits 2nd. 2003. ISBN 0-13-090996-3.
- Mead, Carver; Conway, Lynn. Introduction to VLSI systems. Addison Wesley Publishing Company. 1980. ISBN 978-0-201-04358-7.
- Veendrick, H. J. M. Nanometer CMOS ICs, from Basics to ASICs. Springer. 2008: 770. ISBN 978-1-4020-8332-7. http://springer.com/cn/book/9781402083327?referer=springer.com
- Arjun N. Saxena. Invention of Integrated Circuits: Untold Important Facts. World Scientific. 2009. ISBN 978-981-281-446-3.
- Veendrick, H.J.M. Bits on Chips. 2011: 253. ISBN 978-1-61627-947-9.https://openlibrary.org/works/OL15759799W/Bits_on_Chips/ (頁面存檔備份,存於互聯網檔案館)
外部連結
- 一般
- a large chart listing ICs by generic number (頁面存檔備份,存於互聯網檔案館) including access to most of the datasheets for the parts.
- Marsh, Stephen P. Practical MMIC design. Artech House. 2006. ISBN 978-1-59693-036-0.
- Introduction to Circuit Boards and Integrated Circuits 6/21/2011
- The History of the Integrated Circuit (頁面存檔備份,存於互聯網檔案館) at Nobelprize.org
- 專利
- US3,138,743 – Miniaturized electronic circuit – J. S. Kilby
- US3,138,747 – Integrated semiconductor circuit device – R. F. Stewart
- US3,261,081 – Method of making miniaturized electronic circuits – J. S. Kilby
- US3,434,015 – Capacitor for miniaturized electronic circuits or the like – J. S. Kilby
- 集成電路模具製造
- Zeptobars (頁面存檔備份,存於互聯網檔案館) – Yet another gallery of IC die photographs
- YouTube上的Silicon Chip Wafer Fab Mailbag – A look at some equipment and wafers used in the manufacturing of silicon chip wafers