在数学领域的谐波分析中,连续傅里叶变换 (continuous Fourier transform, CFT)与傅里叶级数 (Fourier series, FS)有非常微妙的关系。而且连续傅里叶变换也与离散时间傅里叶变换 (discrete time Fourier transform, DTFT)和离散傅里叶变换 (discrete Fourier transform, DFT)有很近的关系。傅里叶变换家族 通常就是指这四种变换。
通过利用Dirac delta函数
δ
(
t
)
{\displaystyle \delta (t)}
,CFT可以应用到时间离散 (time-discrete)或时间周期(time-periodic)信号。实际上,FS、 DTFT和DFT都可以由最广泛的CFT得到。从理论上看,它们也都是CFT的特殊情况。
在信号理论和数码信号处理 (digital signal processing, DSP)中,DFT扩展用于近似计算连续信号的频谱,其变换的对象只是一个采样点的有限序列,而且可以由快速傅里叶变换 (fast Fourier transform, FFT)实现。
家族中各个变换的定义
下表中左上、左下、右上和右下分别对应了傅里叶变换家族中CFT、FS、DTFT和DFT四个变换对的定义。
傅里叶变换家族中各种变换的定义
×
连续时间
离散时间
时间非周期
x
(
t
)
=
∫
−
∞
∞
X
(
f
)
e
i
2
π
f
t
d
f
{\displaystyle x(t)=\int _{-\infty }^{\infty }X(f)\ e^{i2\pi ft}\,df}
x
[
n
]
=
T
s
∫
1
/
T
s
X
¯
(
f
)
e
i
2
π
f
n
T
s
d
f
{\displaystyle x[n]=T_{s}\int _{1/T_{s}}{\bar {X}}(f)\ e^{i2\pi fnT_{s}}\ df}
-
X
(
f
)
=
∫
−
∞
∞
x
(
t
)
e
−
i
2
π
f
t
d
t
{\displaystyle X(f)=\int _{-\infty }^{\infty }x(t)\ e^{-i2\pi ft}\,dt}
X
¯
(
f
)
=
∑
n
=
−
∞
+
∞
x
[
n
]
e
−
i
2
π
f
n
T
s
{\displaystyle {\bar {X}}(f)=\sum _{n=-\infty }^{+\infty }x[n]\ e^{-i2\pi fnT_{s}}}
时间周期
x
¯
(
t
)
=
∑
k
=
−
∞
+
∞
X
[
k
]
e
i
2
π
k
T
0
t
{\displaystyle {\bar {x}}(t)=\sum _{k=-\infty }^{+\infty }\!X[k]\;e^{i{\frac {2\pi k}{T_{0}}}t}}
x
n
=
1
N
∑
k
=
0
N
−
1
X
k
e
i
2
π
N
k
n
,
n
=
0
,
…
,
N
−
1.
{\displaystyle x_{n}={\frac {1}{N}}\sum _{k=0}^{N-1}X_{k}\;e^{i{\frac {2\pi }{N}}kn},\quad n=0,\dots ,N-1.}
-
X
[
k
]
=
1
T
0
∫
T
0
x
¯
(
t
)
e
−
i
2
π
k
T
0
t
d
t
{\displaystyle X[k]={\frac {1}{T_{0}}}\int _{T_{0}}{\bar {x}}(t)\;e^{-i{\frac {2\pi k}{T_{0}}}t}\,dt}
X
k
=
∑
n
=
0
N
−
1
x
n
e
−
i
2
π
N
k
n
,
k
=
0
,
…
,
N
−
1.
{\displaystyle X_{k}=\sum _{n=0}^{N-1}x_{n}\;e^{-i{\frac {2\pi }{N}}kn},\quad k=0,\dots ,N-1.}
显然,上表是从时域信号的角度来划分的:表的列区分了连续时间和离散时间的信号,而表的行则区分了时间上非周期的信号和时间上周期的信号。其中重要的参量符号解释为:
x
[
n
]
{\displaystyle x[n]}
和
X
[
k
]
{\displaystyle X[k]}
都为无限序列,其采样间隔,即间隔时间和间隔频率分别为
T
s
{\displaystyle T_{s}}
和
f
0
=
1
/
T
0
{\displaystyle f_{0}=1/T_{0}}
;
x
¯
(
t
)
{\displaystyle {\bar {x}}(t)}
和
X
¯
(
f
)
{\displaystyle {\bar {X}}(f)}
都为周期函数,且时间周期和频率周期分别为
T
0
{\displaystyle T_{0}}
和
f
s
=
1
/
T
s
{\displaystyle f_{s}=1/T_{s}}
;
x
n
{\displaystyle x_{n}}
和
X
k
{\displaystyle X_{k}}
都为有限序列,且序列长度都为
N
{\displaystyle N}
;
关系推导所需的公式
前面表中的定义都可以通过Dirac delta函数
δ
(
t
)
{\displaystyle \delta (t)}
的扩展形式 ,即Dirac comb函数,由CFT引入或推导。为计算离散和/或周期信号的CFT,我们需要引入一些公式,并使用傅里叶变换的一些特性。以下集中给出:
1. Dirac comb 函数的傅里叶变换
Dirac comb函数的定义为
Δ
T
(
t
)
=
def
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
{\displaystyle \Delta _{T}(t){\stackrel {\text{def}}{=}}\sum _{n=-\infty }^{\infty }\delta (t-nT)}
在电气工程中通常又称作冲击串(impulse train)或采样函数 (sampling function)。其重要的傅里叶变换为:
∑
n
=
−
∞
∞
δ
(
t
−
n
T
)
=
1
T
∑
k
=
−
∞
∞
e
i
2
π
k
T
t
⟷
F
1
T
∑
k
=
−
∞
∞
δ
(
f
−
k
T
)
=
∑
n
=
−
∞
∞
e
−
i
2
π
n
T
f
{\displaystyle \sum _{n=-\infty }^{\infty }\delta (t-nT)={\frac {1}{T}}\sum _{k=-\infty }^{\infty }e^{i{\frac {2\pi k}{T}}t}\quad {\stackrel {\mathcal {F}}{\longleftrightarrow }}\quad {\frac {1}{T}}\sum _{k=-\infty }^{\infty }\delta \left(f-{\frac {k}{T}}\right)=\sum _{n=-\infty }^{\infty }e^{-i2\pi nTf}}
这个变换在傅里叶变换家族中各个变换之间转换上起关键作用。
2. 傅里叶变换的卷积定理 (convolution theorem)
这包括了傅里叶变换的时域卷积和频域卷积:
x
1
(
t
)
∗
x
2
(
t
)
⟷
F
X
1
(
f
)
⋅
X
2
(
f
)
x
1
(
t
)
⋅
x
2
(
t
)
⟷
F
X
1
(
f
)
∗
X
2
(
f
)
{\displaystyle {\begin{aligned}x_{1}(t)\ast x_{2}(t)&\quad {\stackrel {\mathcal {F}}{\longleftrightarrow }}\quad X_{1}(f)\cdot X_{2}(f)\\x_{1}(t)\cdot x_{2}(t)&\quad {\stackrel {\mathcal {F}}{\longleftrightarrow }}\quad X_{1}(f)\ast X_{2}(f)\end{aligned}}}
3. 泊松求和公式 (Poisson summation formula)
由Dirac comb函数的傅里叶变换和卷积定理,容易证明泊松求和公式:
1.
∑
n
=
−
∞
∞
x
(
t
−
n
T
0
)
=
1
T
0
∑
k
=
−
∞
∞
X
(
k
T
0
)
e
i
2
π
k
T
0
t
2.
∑
n
=
−
∞
∞
x
(
n
T
)
e
−
i
2
π
n
T
f
=
1
T
∑
k
=
−
∞
∞
X
(
f
−
k
T
)
{\displaystyle {\begin{aligned}1.\qquad &\sum _{n=-\infty }^{\infty }x(t-nT_{0})={\frac {1}{T_{0}}}\sum _{k=-\infty }^{\infty }X\left({\frac {k}{T_{0}}}\right)e^{i{\frac {2\pi k}{T_{0}}}t}\\2.\qquad &\sum _{n=-\infty }^{\infty }x(nT)e^{-i2\pi nTf}={\frac {1}{T}}\sum _{k=-\infty }^{\infty }X\left(f-{\frac {k}{T}}\right)\end{aligned}}}
若第1和第2公式中分别取
t
=
0
{\displaystyle t=0}
和
f
=
0
{\displaystyle f=0}
,得到相同等式:
∑
n
=
−
∞
∞
x
(
n
T
)
=
1
T
∑
k
=
−
∞
∞
X
(
k
T
)
{\displaystyle \sum _{n=-\infty }^{\infty }x(nT)={\frac {1}{T}}\sum _{k=-\infty }^{\infty }X\left({\frac {k}{T}}\right)}
这表明,傅里叶变换时时域函数
x
(
t
)
{\displaystyle x(t)}
和频域函数
X
(
f
)
{\displaystyle X(f)}
分别以
T
{\displaystyle T}
和
1
/
T
{\displaystyle 1/T}
为间隔采样,则所有时域采样点的总和与所有频域采样点扩大
1
/
T
{\displaystyle 1/T}
的总和相等。
各种变换之间的关系
参看
参考文献
Oppenheim, Alan V.; Schafer, R. W.; and Buck, J. R., (1999). Discrete-time signal processing , Upper Saddle River, N.J. : Prentice Hall. ISBN 0137549202
Sklar, B., (2001). Digital Communications: Foundamentals and Applicatons, 2nd Edition , Prentice Hall PTR. ISBN 0130847887