广义奇异值分解 (GSVD)是对矩阵对的矩阵分解 ,将奇异值分解 推广到两个矩阵的情形。它由Van Loan [ 1] 于1976年提出,后来由Paige与Saunders完善,[ 2] 也就是本节描述的版本。与SVD相对,GSVD可以同时分解具有相同列数的矩阵对。SVD、GSVD及SVD的其他一些推广[ 3] [ 4] [ 5] 被广泛用于研究线性系统在二次半范数 方面的条件调节 与正则化 。下面设
F
=
R
{\displaystyle \mathbb {F} =\mathbb {R} }
,或
F
=
C
{\displaystyle \mathbb {F} =\mathbb {C} }
。
定义
A
1
∈
F
m
1
×
n
{\displaystyle A_{1}\in \mathbb {F} ^{m_{1}\times n}}
与
A
2
∈
F
m
2
×
n
{\displaystyle A_{2}\in \mathbb {F} ^{m_{2}\times n}}
的广义奇异值分解 为
A
1
=
U
1
Σ
1
[
W
∗
D
,
0
D
]
Q
∗
,
A
2
=
U
2
Σ
2
[
W
∗
D
,
0
D
]
Q
∗
,
{\displaystyle {\begin{aligned}A_{1}&=U_{1}\Sigma _{1}[W^{*}D,0_{D}]Q^{*},\\A_{2}&=U_{2}\Sigma _{2}[W^{*}D,0_{D}]Q^{*},\end{aligned}}}
,其中
U
1
∈
F
m
1
×
m
1
{\displaystyle U_{1}\in \mathbb {F} ^{m_{1}\times m_{1}}}
为酉矩阵 ;
U
2
∈
F
m
2
×
m
2
{\displaystyle U_{2}\in \mathbb {F} ^{m_{2}\times m_{2}}}
为酉矩阵;
Q
∈
F
n
×
n
{\displaystyle Q\in \mathbb {F} ^{n\times n}}
为酉矩阵;
W
∈
F
k
×
k
{\displaystyle W\in \mathbb {F} ^{k\times k}}
为酉矩阵;
D
∈
R
k
×
k
{\displaystyle D\in \mathbb {R} ^{k\times k}}
对角线元素为正实数,包含
C
=
[
A
1
A
2
]
{\displaystyle C={\begin{bmatrix}A_{1}\\A_{2}\end{bmatrix}}}
的非零奇异值的降序排列,
0
D
=
0
∈
R
k
×
(
n
−
k
)
{\displaystyle 0_{D}=0\in \mathbb {R} ^{k\times (n-k)}}
,
Σ
1
=
⌈
I
A
,
S
1
,
0
A
⌋
∈
R
m
1
×
k
{\displaystyle \Sigma _{1}=\lceil I_{A},S_{1},0_{A}\rfloor \in \mathbb {R} ^{m_{1}\times k}}
是非负实数分块对角阵 ,其中
S
1
=
⌈
α
r
+
1
,
…
,
α
r
+
s
⌋
{\displaystyle S_{1}=\lceil \alpha _{r+1},\dots ,\alpha _{r+s}\rfloor }
,其中
1
>
α
r
+
1
≥
⋯
≥
α
r
+
s
>
0
{\displaystyle 1>\alpha _{r+1}\geq \cdots \geq \alpha _{r+s}>0}
,
I
A
=
I
r
{\displaystyle I_{A}=I_{r}}
,且
0
A
=
0
∈
R
(
m
1
−
r
−
s
)
×
(
k
−
r
−
s
)
{\displaystyle 0_{A}=0\in \mathbb {R} ^{(m_{1}-r-s)\times (k-r-s)}}
;
Σ
2
=
⌈
0
B
,
S
2
,
I
B
⌋
∈
R
m
2
×
k
{\displaystyle \Sigma _{2}=\lceil 0_{B},S_{2},I_{B}\rfloor \in \mathbb {R} ^{m_{2}\times k}}
是非负实数分块对角阵,其中
S
2
=
⌈
β
r
+
1
,
…
,
β
r
+
s
⌋
{\displaystyle S_{2}=\lceil \beta _{r+1},\dots ,\beta _{r+s}\rfloor }
,其中
0
<
β
r
+
1
≤
⋯
≤
β
r
+
s
<
1
{\displaystyle 0<\beta _{r+1}\leq \cdots \leq \beta _{r+s}<1}
,
I
B
=
I
k
−
r
−
s
{\displaystyle I_{B}=I_{k-r-s}}
,且
0
B
=
0
∈
R
(
m
2
−
k
+
r
)
×
r
{\displaystyle 0_{B}=0\in \mathbb {R} ^{(m_{2}-k+r)\times r}}
;
Σ
1
∗
Σ
1
=
⌈
α
1
2
,
…
,
α
k
2
⌋
{\displaystyle \Sigma _{1}^{*}\Sigma _{1}=\lceil \alpha _{1}^{2},\dots ,\alpha _{k}^{2}\rfloor }
,
Σ
2
∗
Σ
2
=
⌈
β
1
2
,
…
,
β
k
2
⌋
{\displaystyle \Sigma _{2}^{*}\Sigma _{2}=\lceil \beta _{1}^{2},\dots ,\beta _{k}^{2}\rfloor }
,
Σ
1
∗
Σ
1
+
Σ
2
∗
Σ
2
=
I
k
{\displaystyle \Sigma _{1}^{*}\Sigma _{1}+\Sigma _{2}^{*}\Sigma _{2}=I_{k}}
,
k
=
rank
(
C
)
{\displaystyle k={\textrm {rank}}(C)}
.
记
α
1
=
⋯
=
α
r
=
1
,
α
r
+
s
+
1
=
⋯
=
α
k
=
0
,
β
1
=
⋯
=
β
r
=
0
,
β
r
+
s
+
1
=
⋯
=
β
k
=
1
{\displaystyle \alpha _{1}=\cdots =\alpha _{r}=1,\ \alpha _{r+s+1}=\cdots =\alpha _{k}=0,\ \beta _{1}=\cdots =\beta _{r}=0,\ \beta _{r+s+1}=\cdots =\beta _{k}=1}
。而
Σ
1
{\displaystyle \Sigma _{1}}
是对角阵,
Σ
2
{\displaystyle \Sigma _{2}}
不总是对角阵,因为前导矩形零矩阵;相反,
Σ
2
{\displaystyle \Sigma _{2}}
是“副对角阵”。
变体
GSVD有许多变体,与这样一个事实有关:
Q
∗
{\displaystyle Q^{*}}
总可以左乘
E
E
∗
=
I
<
(
E
∈
F
n
×
n
)
{\displaystyle EE^{*}=I<(E\in \mathbb {F} ^{n\times n})}
是任意酉矩阵。记
X
=
(
[
W
∗
D
,
0
D
]
Q
∗
)
∗
{\displaystyle X=([W^{*}D,0_{D}]Q^{*})^{*}}
X
∗
=
[
0
,
R
]
Q
^
∗
{\displaystyle X^{*}=[0,R]{\hat {Q}}^{*}}
,其中
R
∈
F
k
×
k
{\displaystyle R\in \mathbb {F} ^{k\times k}}
是上三角可逆阵;
Q
^
∈
F
n
×
n
{\displaystyle {\hat {Q}}\in \mathbb {F} ^{n\times n}}
是酉矩阵。QR分解 总可以得到这样的矩阵。
Y
=
W
∗
D
{\displaystyle Y=W^{*}D}
,那么
Y
{\displaystyle Y}
可逆。
下面是GSVD的一些变体:
MATLAB (gsvd):
A
1
=
U
1
Σ
1
X
∗
,
A
2
=
U
2
Σ
2
X
∗
.
{\displaystyle {\begin{aligned}A_{1}&=U_{1}\Sigma _{1}X^{*},\\A_{2}&=U_{2}\Sigma _{2}X^{*}.\end{aligned}}}
LAPACK (LA_GGSVD):
A
1
=
U
1
Σ
1
[
0
,
R
]
Q
^
∗
,
A
2
=
U
2
Σ
2
[
0
,
R
]
Q
^
∗
.
{\displaystyle {\begin{aligned}A_{1}&=U_{1}\Sigma _{1}[0,R]{\hat {Q}}^{*},\\A_{2}&=U_{2}\Sigma _{2}[0,R]{\hat {Q}}^{*}.\end{aligned}}}
简化:
A
1
=
U
1
Σ
1
[
Y
,
0
D
]
Q
∗
,
A
2
=
U
2
Σ
2
[
Y
,
0
D
]
Q
∗
.
{\displaystyle {\begin{aligned}A_{1}&=U_{1}\Sigma _{1}[Y,0_{D}]Q^{*},\\A_{2}&=U_{2}\Sigma _{2}[Y,0_{D}]Q^{*}.\end{aligned}}}
广义奇异值
A
1
{\displaystyle A_{1}}
与
A
2
{\displaystyle A_{2}}
的广义奇异值 是一对
(
a
,
b
)
∈
R
2
{\displaystyle (a,b)\in \mathbb {R} ^{2}}
使得
lim
δ
→
0
det
(
b
2
A
1
∗
A
1
−
a
2
A
2
∗
A
2
+
δ
I
n
)
/
det
(
δ
I
n
−
k
)
=
0
,
a
2
+
b
2
=
1
,
a
,
b
≥
0.
{\displaystyle {\begin{aligned}\lim _{\delta \to 0}\det(b^{2}A_{1}^{*}A_{1}-a^{2}A_{2}^{*}A_{2}+\delta I_{n})/\det(\delta I_{n-k})&=0,\\a^{2}+b^{2}&=1,\\a,b&\geq 0.\end{aligned}}}
我们有
A
i
A
j
∗
=
U
i
Σ
i
Y
Y
∗
Σ
j
∗
U
j
∗
{\displaystyle A_{i}A_{j}^{*}=U_{i}\Sigma _{i}YY^{*}\Sigma _{j}^{*}U_{j}^{*}}
A
i
∗
A
j
=
Q
[
Y
∗
Σ
i
∗
Σ
j
Y
0
0
0
]
Q
∗
=
Q
1
Y
∗
Σ
i
∗
Σ
j
Y
Q
1
∗
{\displaystyle A_{i}^{*}A_{j}=Q{\begin{bmatrix}Y^{*}\Sigma _{i}^{*}\Sigma _{j}Y&0\\0&0\end{bmatrix}}Q^{*}=Q_{1}Y^{*}\Sigma _{i}^{*}\Sigma _{j}YQ_{1}^{*}}
根据这些性质,可以证明广义奇异值正是成对的
(
α
i
,
β
i
)
{\displaystyle (\alpha _{i},\beta _{i})}
。有
det
(
b
2
A
1
∗
A
1
−
a
2
A
2
∗
A
2
+
δ
I
n
)
=
det
(
b
2
A
1
∗
A
1
−
a
2
A
2
∗
A
2
+
δ
Q
Q
∗
)
=
det
(
Q
[
Y
∗
(
b
2
Σ
1
∗
Σ
1
−
a
2
Σ
2
∗
Σ
2
)
Y
+
δ
I
k
0
0
δ
I
n
−
k
]
Q
∗
)
=
det
(
δ
I
n
−
k
)
det
(
Y
∗
(
b
2
Σ
1
∗
Σ
1
−
a
2
Σ
2
∗
Σ
2
)
Y
+
δ
I
k
)
.
{\displaystyle {\begin{aligned}&\det(b^{2}A_{1}^{*}A_{1}-a^{2}A_{2}^{*}A_{2}+\delta I_{n})\\=&\det(b^{2}A_{1}^{*}A_{1}-a^{2}A_{2}^{*}A_{2}+\delta QQ^{*})\\=&\det \left(Q{\begin{bmatrix}Y^{*}(b^{2}\Sigma _{1}^{*}\Sigma _{1}-a^{2}\Sigma _{2}^{*}\Sigma _{2})Y+\delta I_{k}&0\\0&\delta I_{n-k}\end{bmatrix}}Q^{*}\right)\\=&\det(\delta I_{n-k})\det(Y^{*}(b^{2}\Sigma _{1}^{*}\Sigma _{1}-a^{2}\Sigma _{2}^{*}\Sigma _{2})Y+\delta I_{k}).\end{aligned}}}
因此
lim
δ
→
0
det
(
b
2
A
1
∗
A
1
−
a
2
A
2
∗
A
2
+
δ
I
n
)
/
det
(
δ
I
n
−
k
)
=
lim
δ
→
0
det
(
Y
∗
(
b
2
Σ
1
∗
Σ
1
−
a
2
Σ
2
∗
Σ
2
)
Y
+
δ
I
k
)
=
det
(
Y
∗
(
b
2
Σ
1
∗
Σ
1
−
a
2
Σ
2
∗
Σ
2
)
Y
)
=
|
det
(
Y
)
|
2
∏
i
=
1
k
(
b
2
α
i
2
−
a
2
β
i
2
)
.
{\displaystyle {\begin{aligned}{}&\lim _{\delta \to 0}\det(b^{2}A_{1}^{*}A_{1}-a^{2}A_{2}^{*}A_{2}+\delta I_{n})/\det(\delta I_{n-k})\\=&\lim _{\delta \to 0}\det(Y^{*}(b^{2}\Sigma _{1}^{*}\Sigma _{1}-a^{2}\Sigma _{2}^{*}\Sigma _{2})Y+\delta I_{k})\\=&\det(Y^{*}(b^{2}\Sigma _{1}^{*}\Sigma _{1}-a^{2}\Sigma _{2}^{*}\Sigma _{2})Y)\\=&|\det(Y)|^{2}\prod _{i=1}^{k}(b^{2}\alpha _{i}^{2}-a^{2}\beta _{i}^{2}).\end{aligned}}}
对某个
i
{\displaystyle i}
,当
a
=
α
i
,
b
=
β
i
{\displaystyle a=\alpha _{i},\ b=\beta _{i}}
时,表达式恰为零。
在[ 2] 中,广义奇异值被认为是求解
det
(
b
2
A
1
∗
A
1
−
a
2
A
2
∗
A
2
)
=
0
{\displaystyle \det(b^{2}A_{1}^{*}A_{1}-a^{2}A_{2}^{*}A_{2})=0}
的奇异值。然而,这只有当
k
=
n
{\displaystyle k=n}
时才成立,否则行列式对每对
(
a
,
b
)
∈
R
2
{\displaystyle (a,b)\in \mathbb {R} ^{2}}
都将是0;这可通过替换上面的
δ
=
0
{\displaystyle \delta =0}
得到。
广义逆
对任意可逆阵
E
∈
F
n
×
n
{\displaystyle E\in \mathbb {F} ^{n\times n}}
,令
E
+
=
E
−
1
{\displaystyle E^{+}=E^{-1}}
,对任意零矩阵
0
∈
F
m
×
n
{\displaystyle 0\in \mathbb {F} ^{m\times n}}
,令
0
+
=
0
∗
{\displaystyle 0^{+}=0^{*}}
,对任意分块对角阵令
⌈
E
1
,
E
2
⌋
+
=
⌈
E
1
+
,
E
2
+
⌋
{\displaystyle \left\lceil E_{1},E_{2}\right\rfloor ^{+}=\left\lceil E_{1}^{+},E_{2}^{+}\right\rfloor }
。定义
A
i
+
=
Q
[
Y
−
1
0
]
Σ
i
+
U
i
∗
{\displaystyle A_{i}^{+}=Q{\begin{bmatrix}Y^{-1}\\0\end{bmatrix}}\Sigma _{i}^{+}U_{i}^{*}}
可以证明这里定义的
A
i
+
{\displaystyle A_{i}^{+}}
是
A
i
{\displaystyle A_{i}}
的广义逆阵 ;特别是
A
i
{\displaystyle A_{i}}
的
{
1
,
2
,
3
}
{\displaystyle \{1,2,3\}}
逆。由于它一般不满足
(
A
i
+
A
i
)
∗
=
A
i
+
A
i
{\displaystyle (A_{i}^{+}A_{i})^{*}=A_{i}^{+}A_{i}}
,所以不是摩尔-彭若斯广义逆 ;否则可以得出,对任意所选矩阵都有
(
A
B
)
+
=
B
+
A
+
{\displaystyle (AB)^{+}=B^{+}A^{+}}
,这只对特定类型的矩阵成立。
设
Q
=
[
Q
1
Q
2
]
{\displaystyle Q={\begin{bmatrix}Q_{1}&Q_{2}\end{bmatrix}}}
,其中
Q
1
∈
F
n
×
k
,
Q
2
∈
F
n
×
(
n
−
k
)
{\displaystyle Q_{1}\in \mathbb {F} ^{n\times k},\ Q_{2}\in \mathbb {F} ^{n\times (n-k)}}
。这个广义逆具有如下性质:
Σ
1
+
=
⌈
I
A
,
S
1
−
1
,
0
A
T
⌋
{\displaystyle \Sigma _{1}^{+}=\lceil I_{A},S_{1}^{-1},0_{A}^{T}\rfloor }
Σ
2
+
=
⌈
0
B
T
,
S
2
−
1
,
I
B
⌋
{\displaystyle \Sigma _{2}^{+}=\lceil 0_{B}^{T},S_{2}^{-1},I_{B}\rfloor }
Σ
1
Σ
1
+
=
⌈
I
,
I
,
0
⌋
{\displaystyle \Sigma _{1}\Sigma _{1}^{+}=\lceil I,I,0\rfloor }
Σ
2
Σ
2
+
=
⌈
0
,
I
,
I
⌋
{\displaystyle \Sigma _{2}\Sigma _{2}^{+}=\lceil 0,I,I\rfloor }
Σ
1
Σ
2
+
=
⌈
0
,
S
1
S
2
−
1
,
0
⌋
{\displaystyle \Sigma _{1}\Sigma _{2}^{+}=\lceil 0,S_{1}S_{2}^{-1},0\rfloor }
Σ
1
+
Σ
2
=
⌈
0
,
S
1
−
1
S
2
,
0
⌋
{\displaystyle \Sigma _{1}^{+}\Sigma _{2}=\lceil 0,S_{1}^{-1}S_{2},0\rfloor }
A
i
A
j
+
=
U
i
Σ
i
Σ
j
+
U
j
∗
{\displaystyle A_{i}A_{j}^{+}=U_{i}\Sigma _{i}\Sigma _{j}^{+}U_{j}^{*}}
A
i
+
A
j
=
Q
[
Y
−
1
Σ
i
+
Σ
j
Y
0
0
0
]
Q
∗
=
Q
1
Y
−
1
Σ
i
+
Σ
j
Y
Q
1
∗
{\displaystyle A_{i}^{+}A_{j}=Q{\begin{bmatrix}Y^{-1}\Sigma _{i}^{+}\Sigma _{j}Y&0\\0&0\end{bmatrix}}Q^{*}=Q_{1}Y^{-1}\Sigma _{i}^{+}\Sigma _{j}YQ_{1}^{*}}
商SVD
'
A
1
{\displaystyle A_{1}}
与
A
2
{\displaystyle A_{2}}
的'广义奇异比是
σ
i
=
α
i
β
i
+
{\displaystyle \sigma _{i}=\alpha _{i}\beta _{i}^{+}}
。由以上性质,
A
1
A
2
+
=
U
1
Σ
1
Σ
2
+
U
2
∗
{\displaystyle A_{1}A_{2}^{+}=U_{1}\Sigma _{1}\Sigma _{2}^{+}U_{2}^{*}}
。注意
Σ
1
Σ
2
+
=
⌈
0
,
S
1
S
2
−
1
,
0
⌋
{\displaystyle \Sigma _{1}\Sigma _{2}^{+}=\lceil 0,S_{1}S_{2}^{-1},0\rfloor }
是对角阵,忽略前导零矩阵,按降序包含着奇异比。若
A
2
{\displaystyle A_{2}}
可逆,则
Σ
1
Σ
2
+
{\displaystyle \Sigma _{1}\Sigma _{2}^{+}}
没有前导零,广义奇异比就是奇异值,
U
1
{\displaystyle U_{1}}
与
U
2
{\displaystyle U_{2}}
则是
A
1
A
2
+
=
A
1
A
2
−
1
{\displaystyle A_{1}A_{2}^{+}=A_{1}A_{2}^{-1}}
的奇异向量矩阵。事实上计算
A
1
A
2
−
1
{\displaystyle A_{1}A_{2}^{-1}}
的SVD是GSVD的动机之一,因为“形成
A
B
−
1
{\displaystyle AB^{-1}}
并求SVD,当
B
{\displaystyle B}
的方程解条件不佳时,可能产生不必要、较大的数值误差”。[ 2] 因此有时也被称为“商GSVD”,虽然这并不是使用GSVD的唯一原因。若
A
2
{\displaystyle A_{2}}
不可逆,并放宽奇异值降序排列的要求,则
U
1
Σ
1
Σ
2
+
U
2
∗
{\displaystyle U_{1}\Sigma _{1}\Sigma _{2}^{+}U_{2}^{*}}
仍是
A
1
A
2
+
{\displaystyle A_{1}A_{2}^{+}}
的SVD。或者,把前导零移到后面,也可以找到降序SVD:
U
1
Σ
1
Σ
2
+
U
2
∗
=
(
U
1
P
1
)
P
1
∗
Σ
1
Σ
2
+
P
2
(
P
2
∗
U
2
∗
)
{\displaystyle U_{1}\Sigma _{1}\Sigma _{2}^{+}U_{2}^{*}=(U_{1}P_{1})P_{1}^{*}\Sigma _{1}\Sigma _{2}^{+}P_{2}(P_{2}^{*}U_{2}^{*})}
,其中
P
1
{\displaystyle P_{1}}
与
P
2
{\displaystyle P_{2}}
是适当的置换矩阵。由于秩等于非零奇异值的个数,所以
r
a
n
k
(
A
1
A
2
+
)
=
s
{\displaystyle \mathrm {rank} (A_{1}A_{2}^{+})=s}
。
构造
令
C
=
P
⌈
D
,
0
⌋
Q
∗
{\displaystyle C=P\lceil D,0\rfloor Q^{*}}
为
C
=
[
A
1
A
2
]
{\displaystyle C={\begin{bmatrix}A_{1}\\A_{2}\end{bmatrix}}}
的SVD,其中
P
∈
F
(
m
1
+
m
2
)
×
(
m
1
×
m
2
)
{\displaystyle P\in \mathbb {F} ^{(m_{1}+m_{2})\times (m_{1}\times m_{2})}}
是酉矩阵,
Q
{\displaystyle Q}
与
D
{\displaystyle D}
如上所述;
P
=
[
P
1
,
P
2
]
{\displaystyle P=[P_{1},P_{2}]}
,其中
P
1
∈
F
(
m
1
+
m
2
)
×
k
{\displaystyle P_{1}\in \mathbb {F} ^{(m_{1}+m_{2})\times k}}
与
P
2
∈
F
(
m
1
+
m
2
)
×
(
n
−
k
)
{\displaystyle P_{2}\in \mathbb {F} ^{(m_{1}+m_{2})\times (n-k)}}
;
P
1
=
[
P
11
P
21
]
{\displaystyle P_{1}={\begin{bmatrix}P_{11}\\P_{21}\end{bmatrix}}}
,其中
P
11
∈
F
m
1
×
k
{\displaystyle P_{11}\in \mathbb {F} ^{m_{1}\times k}}
与
P
21
∈
F
m
2
×
k
{\displaystyle P_{21}\in \mathbb {F} ^{m_{2}\times k}}
;
P
11
=
U
1
Σ
1
W
∗
{\displaystyle P_{11}=U_{1}\Sigma _{1}W^{*}}
通过
P
11
{\displaystyle P_{11}}
的SVD得到,其中
U
1
{\displaystyle U_{1}}
、
Σ
1
{\displaystyle \Sigma _{1}}
与
W
{\displaystyle W}
如上所述,
P
21
W
=
U
2
Σ
2
{\displaystyle P_{21}W=U_{2}\Sigma _{2}}
经过类似于QR分解 的分解,其中
U
2
{\displaystyle U_{2}}
与
Σ
2
{\displaystyle \Sigma _{2}}
如上所述。
那么,
C
=
P
⌈
D
,
0
⌋
Q
∗
=
[
P
1
D
,
0
]
Q
∗
=
[
U
1
Σ
1
W
∗
D
0
U
2
Σ
2
W
∗
D
0
]
Q
∗
=
[
U
1
Σ
1
[
W
∗
D
,
0
]
Q
∗
U
2
Σ
2
[
W
∗
D
,
0
]
Q
∗
]
.
{\displaystyle {\begin{aligned}C&=P\lceil D,0\rfloor Q^{*}\\{}&=[P_{1}D,0]Q^{*}\\{}&={\begin{bmatrix}U_{1}\Sigma _{1}W^{*}D&0\\U_{2}\Sigma _{2}W^{*}D&0\end{bmatrix}}Q^{*}\\{}&={\begin{bmatrix}U_{1}\Sigma _{1}[W^{*}D,0]Q^{*}\\U_{2}\Sigma _{2}[W^{*}D,0]Q^{*}\end{bmatrix}}.\end{aligned}}}
还有
[
U
1
∗
0
0
U
2
∗
]
P
1
W
=
[
Σ
1
Σ
2
]
.
{\displaystyle {\begin{bmatrix}U_{1}^{*}&0\\0&U_{2}^{*}\end{bmatrix}}P_{1}W={\begin{bmatrix}\Sigma _{1}\\\Sigma _{2}\end{bmatrix}}.}
因此
Σ
1
∗
Σ
1
+
Σ
2
∗
Σ
2
=
[
Σ
1
Σ
2
]
∗
[
Σ
1
Σ
2
]
=
W
∗
P
1
∗
[
U
1
0
0
U
2
]
[
U
1
∗
0
0
U
2
∗
]
P
1
W
=
I
.
{\displaystyle \Sigma _{1}^{*}\Sigma _{1}+\Sigma _{2}^{*}\Sigma _{2}={\begin{bmatrix}\Sigma _{1}\\\Sigma _{2}\end{bmatrix}}^{*}{\begin{bmatrix}\Sigma _{1}\\\Sigma _{2}\end{bmatrix}}=W^{*}P_{1}^{*}{\begin{bmatrix}U_{1}&0\\0&U_{2}\end{bmatrix}}{\begin{bmatrix}U_{1}^{*}&0\\0&U_{2}^{*}\end{bmatrix}}P_{1}W=I.}
由于
P
1
{\displaystyle P_{1}}
的列归一正交,
|
|
P
1
|
|
2
≤
1
{\displaystyle ||P_{1}||_{2}\leq 1}
,因此
|
|
Σ
1
|
|
2
=
|
|
U
1
∗
P
1
W
|
|
2
=
|
|
P
1
|
|
2
≤
1.
{\displaystyle ||\Sigma _{1}||_{2}=||U_{1}^{*}P_{1}W||_{2}=||P_{1}||_{2}\leq 1.}
对每个
x
∈
R
k
{\displaystyle x\in \mathbb {R} ^{k}}
,有
|
|
x
|
|
2
=
1
{\displaystyle ||x||_{2}=1}
,使得
|
|
P
21
x
|
|
2
2
≤
|
|
P
11
x
|
|
2
2
+
|
|
P
21
x
|
|
2
2
=
|
|
P
1
x
|
|
2
2
≤
1.
{\displaystyle ||P_{21}x||_{2}^{2}\leq ||P_{11}x||_{2}^{2}+||P_{21}x||_{2}^{2}=||P_{1}x||_{2}^{2}\leq 1.}
因此
|
|
P
21
|
|
2
≤
1
{\displaystyle ||P_{21}||_{2}\leq 1}
;
|
|
Σ
2
|
|
2
=
|
|
U
2
∗
P
21
W
|
|
2
=
|
|
P
21
|
|
2
≤
1.
{\displaystyle ||\Sigma _{2}||_{2}=||U_{2}^{*}P_{21}W||_{2}=||P_{21}||_{2}\leq 1.}