球面像差
球面像差(英语:SA/Spherical aberration),是指发生在经过透镜折射或面镜反射的光线,接近中心与靠近边缘的光线不能将影像聚集在一个点上的现象。这在望远镜和其他的光学仪器上都是一个缺点。这是因为透镜和面镜必须满足所需的形状,否则不能聚焦在一个点上造成的。 球面像差与镜面直径的四次方成正比,与焦长的三次方成反比,所以他在低焦比的镜子,也就是所谓的“快镜”上就比较明显。
对使用球面镜的小望远镜,当焦比低于f/10时,来自远处的点光源(例如恒星)就不能聚集在一个点上。特别是来自镜面边缘的光线比来自镜面中心的光线更不易聚焦,这造成影像因为球面像差的存在而不能很清晰的成象。所以焦比低于f/10的望远镜通常都使用非球面镜或加上修正镜。
在透镜系统中,可以使用凸透镜和凹透镜的组合来减少球面像差,就如同使用非球面透镜一样。
-
球面像差。一个理想的镜面(顶端),能经所有入射的光线汇聚在光轴上的一个点,但一个真实的镜面(底端)会有球面像差:靠近光轴的光线会比离光轴较远的光线较为紧密的汇聚在一个点上,因此光线不能汇聚在一个理想的焦点上(图较为夸张)
-
一个 点光源 在负球面像差(上) 、无球面像差(中)、和正球面像差(下)的系统中的成像情形。左面的影像是在焦点内成像,右边是在焦点外的成像
-
平行光束通过透镜后聚焦像的纵切面,上:负球面像差,中:无球面像差,下:正球面像差。镜子位于图的左侧
-
来自球面镜的球面像差
球面像差公式
- 单球面
一个球面,PA 为由球面顶点到非近轴光线入射点距离,球面左右介质的折射率分别为n,n';非近轴入射角,折射角分别为J,J';非近轴入射线和折射线与光轴的夹角分别为U,U';近轴光线的入射角为i;这个球面对球面像差的贡献为[1]
球面像差=
在四种情况下,球面像差为零:
- PA=0:物体和像与球面顶点重合;
- I'=I:物体和物象在球面的曲率中心;
- i=0;
- I=U'或I'=U:在这种情形下的球面成为消球差曲面。
- 消球差球面
根据球面折射的基本方程可以导出[2]:
对于消球差曲面,凡是射向同一点B入射光,其折射线与光轴相交于一个共同点B'。
例如,n=1,n'=1.5[3]。
消球差曲面多用于高倍率显微镜的物镜[4][3]。一个消球差薄透镜由一个消球差球面和一个平面镜组成,对于平行光。消球差薄透镜等同一块平板玻璃,对于聚合光束,消球差薄透镜增加光束的聚合度,对于发散光束,消球差薄透镜增加光束的发散度[5]。
- 同轴球面系
对于一个由多个球面组成镜头,球面像差由以下公式给出[6]:
LA'=trans+newsp
其中 trans=
newsp=
球面像差展开式
球面像差可表示为
薄透镜组的球面像差
亚历山大·尤金·康拉迪推导出薄透镜组的球面像差公式如下[9][10]:
SC= 。
其中“0”代表最后的结果,Σ代表对各镜片之和
薄透镜的球面像差
对于单薄镜片,上式可简化为[11]。
单镜片的球面像差=LA'=
令上式对c_1的导数为零,可求得单镜片具有最小球面像差的条件[12]:
=
即 = .
当物距为无穷远时,v_1=0;
于是
[13]。
n | r_1/r_2 |
---|---|
1.5 | -6 |
1.518 | -6.7374 |
1.6 | -14 |
1.7 | 93.5 |
1.8 | 12.1765 |
2 | 5 |
3 | 1.9 |
4 | 1.5 |
参考文献
- ^ Kingslake p104
- ^ Rudolf Kingslake p104-105
- ^ 3.0 3.1 Rudolf Kingslake p105
- ^ Moritz von Rohr p244
- ^ Rudolf Kingslake p106
- ^ Rudolf Kingslake p104
- ^ A.E.Conrady p101
- ^ Kingslake p114
- ^ Alexander Eugen Conrady, p95
- ^ Kingslake p117
- ^ Kingslake p118
- ^ Kingslake, p118
- ^ Kingslake p119
- von Rohr莫里兹·冯·罗尔, Moritz. Geometrical Investigation of the Formation of Images in Optical Instruments. H.M.STATIONARY, LONDON. 1920.
- Conrady亚历山大·尤金·康拉迪, Alexander Eugen. applied Optics & Optical design. DOVER PUBLICATION. 1957.
- Kingslake 鲁道夫·京斯莱克, Rudolf. LENS DESIGN FUNDAMENTALS. ACADEMIC PRESS,NEW YORK. 1978. ISBN 012374301X.