数学中,给出可测空间和其上的测度,可以获得积可测空间和其上的积测度。概念上近似于集合的笛卡儿积和两个拓扑空间的积拓扑。
设 ( X 1 , Σ 1 ) {\displaystyle (X_{1},\Sigma _{1})} 和 ( X 2 , Σ 2 ) {\displaystyle (X_{2},\Sigma _{2})} 是两个测度空间,就是说 Σ 1 {\displaystyle \Sigma _{1}} 和 Σ 2 {\displaystyle \Sigma _{2}} 分别是在 X 1 {\displaystyle X_{1}} 和 X 2 {\displaystyle X_{2}} 上的σ代数,又设 μ 1 {\displaystyle \mu _{1}} 和 μ 2 {\displaystyle \mu _{2}} 是其上的测度。以 Σ 1 × Σ 2 {\displaystyle \Sigma _{1}\times \Sigma _{2}} 记形如 B 1 × B 2 {\displaystyle B_{1}\times B_{2}} 的子集产生的笛卡儿积 X 1 × X 2 {\displaystyle X_{1}\times X_{2}} 上的σ代数,其中 B 1 ∈ Σ 1 {\displaystyle B_{1}\in \Sigma _{1}} 及 B 2 ∈ Σ 2 {\displaystyle B_{2}\in \Sigma _{2}} 。
积测度 μ 1 × μ 2 {\displaystyle \mu _{1}\times \mu _{2}} 定义为在可测空间 ( X 1 × X 2 , Σ 1 × Σ 2 ) {\displaystyle (X_{1}\times X_{2},\Sigma _{1}\times \Sigma _{2})} 上唯一的测度,适合
对所有
事实上对所有可测集E,
其中 E x = { y ∈ X 2 | ( x , y ) ∈ E } {\displaystyle E_{x}=\{y\in X_{2}|(x,y)\in E\}} , E y = { x ∈ X 1 | ( x , y ) ∈ E } {\displaystyle E_{y}=\{x\in X_{1}|(x,y)\in E\}} ,两个都是可测集。
这测度的存在性和唯一性是得自哈恩-柯尔莫哥洛夫定理.
欧几里得空间Rn上的博雷尔测度可得自n个实数轴R上的博雷尔测度的积。
本条目含有来自PlanetMath《Product measure》的内容,版权遵守知识共享协议:署名-相同方式共享协议。