假若,两个不等于零的实数 的除商 是一个有理数,或者说, 的比例相等于两个非零整数 的比例:

则称它们是互相可通约的(commensurable),而这特性则称为通约性。这意味着,存在一个非零的实数公约数(common measure),使得

所以

或是

其中 ,所以

反之,如果该二数的除商是一个无理数,则称它们是不可通约的(incommensurable),亦即, 之间不存在一个公约数 使得

历史

毕达哥拉斯学派发现了不可通约数(无理数) ,这破坏了他们的比例论

为了挽救比例论,尤得塞斯提出了以几何量为基础的比例论,被欧几里得收录在《几何原本》的第五册中。 这本书里面记载着,假若,  个线段   连接起来,成为一个线段,全等于线段    个线段   连接起来,成为一个线段,全等于线段   ;这里,  整数。那么,两个线段    是互相可通约的。欧几里得并没有用到实数的概念。他用到了线段与线段之间,全等,比较长,或比较短,这些概念。

数学

设定实数    。那么,实数   ,整数    的存在,促使

 
 

充分必要条件是除商   为有理数。

假设    是正值的实数。又假设我们有一支尺,长度单位为实数   。我们用这尺来测量两个长度为    的线段。假若,所得到的答案都是整数,则称    互相可通约的;否则,互相不可通约的

天文学

天文学里,两个公转于运行轨道的天体,像行星卫星、或小行星,若它们的公转周期的比例是有理数,则称它们相互呈现通约性

物理学

在一个周期性物理系统里,每一个广义坐标都有它运动的周期。假若,其中有任何广义坐标的周期与别的广义坐标的周期不相同,则称此物理系统为多重周期性物理系统。假若,两个广义坐标的周期的比例是个有理数,则称这两个周期是互相可通约的。假若,每一个广义坐标的周期与其它的广义坐标的周期都是互相可通约的,则此系统是完全可通约的,称此系统为完全可通约系统

参阅