冰下湖(英语:Subglacial lake)是在冰川下的湖泊,位于冰帽冰盖下方,冰和底层基岩之间的边界中。在此处由于压力的增加而降低了冰的压力熔点[1][2]。当上面的冰逐渐以每年几毫米的速度融化时。融水会从高水压区域流向低水压区域,而形成液态水体,这些液态水体可与外部环境隔离数百万年[3]

冰下湖首次在南极冰盖下发现的,目前已在南极冰盖、格陵兰冰原下方和冰岛瓦特纳冰原下发现了400多个冰下湖泊。冰下湖所含的液态淡水,约占地球上所有液态淡水的 15%。仅南极冰盖的冰下湖的面积估计约为10,000平方公里[4] [5][6] [7]

冰下湖的生态系统是与地球大气隔绝的,受到冰、水、沉积物和生物之间相互作用的影响。嗜极生物的微生物群落在此处很活跃,这些微生物适应寒冷及低营养条件。其生物化学循环亦不依靠太阳能量,对天体生物学和寻找外星生命领域的研究,具特别价值[8][9]

物理特性

由于地热平衡了冰表面的热量损失,所以冰下湖中的水能保持液态。上覆冰川的压力导致水的熔点低于0°C。冰下湖的上限将位于水的压力熔点与温度梯度相交的水平处。因此在南极最大的冰下湖沃斯托克湖中,其湖上的冰比周围的冰盖厚得多。含高盐的冰下湖,也因其含盐量高,而保持液态[4]

并非所有常年被冰覆盖的湖泊都可以称为冰下湖,因为有些湖泊是被普通湖冰覆盖,例如麦克默多干谷邦尼湖霍尔湖

静压密封

冰下湖中的水位可能远高于地面。理论上,冰下湖甚至可以存在于山顶,只要其上的冰足够薄以形成所需的静水密封。浮动水位可以被认为是穿过冰进入湖中的钻孔中的水位。它相当于在正常冰架上一块冰漂浮的高度。当湖周围的冰层太厚以至于等位面下降到不透水的地面时,就会形成静水密封。然后,冰缘下方的水被静压密封压回湖中。据估计,沃斯托克湖的冰缘只有7米,而浮面则高出湖面约3公里[10]

冰岛的冰下湖泊是一个已知危害,因为火山活动可以产生足够的融水来淹没冰坝和湖封,并导致冰川溃决洪水[10]

参考文献

  1. ^ Palmer, Steven J.; Dowdeswell, Julian A.; Christoffersen, Poul; Young, Duncan A.; Blankenship, Donald D.; Greenbaum, Jamin S.; Benham, Toby; Bamber, Jonathan; Siegert, Martin J. (2013-12-16). "Greenland subglacial lakes detected by radar: GREENLAND SUBGLACIAL LAKES DISCOVERED". Geophysical Research Letters. 40 (23): 6154–6159. Bibcode:2013GeoRL..40.6154P. doi:10.1002/2013GL058383. hdl:10871/30231. S2CID 55286616.
  2. ^ Siegert, Martin John; Kennicutt, Mahlon C. (2018-09-12). "Governance of the Exploration of Subglacial Antarctica". Frontiers in Environmental Science. 6: 103. doi:10.3389/fenvs.2018.00103. hdl:10044/1/63886. ISSN 2296-665X
  3. ^ Drewry, D (1983). "Antarctica: Glaciological and Geophysical Folio". University of Cambridge, Scott Polar Research Institute. 2.
  4. ^ 4.0 4.1 Davies, Bethan. "Antarctic Glaciers". AntarcticGlaciers.org. Retrieved 2019-12-16.
  5. ^ Bowling, J. S.; Livingstone, S. J.; Sole, A. J.; Chu, W. (2019-06-26). "Distribution and dynamics of Greenland subglacial lakes". Nature Communications. 10 (1): 2810. Bibcode:2019NatCo..10.2810B. doi:10.1038/s41467-019-10821-w. ISSN 2041-1723. PMC 6594964. PMID 31243282.
  6. ^ Björnsson, Helgi (2003-02-01). "Subglacial lakes and jökulhlaups in Iceland". Global and Planetary Change. Subglacial Lakes: A Planetary Perspective. 35 (3): 255–271. Bibcode:2003GPC....35..255B. doi:10.1016/S0921-8181(02)00130-3. ISSN 0921-8181.
  7. ^ Dowdeswell, Julian A; Siegert, Martin J (February 2003). "The physiography of modern Antarctic subglacial lakes". Global and Planetary Change. 35 (3–4): 221–236. Bibcode:2003GPC....35..221D. doi:10.1016/S0921-8181(02)00128-5.
  8. ^ Petit, Jean Robert; Alekhina, Irina; Bulat, Sergey (2005), Gargaud, Muriel; Barbier, Bernard; Martin, Hervé; Reisse, Jacques (eds.), "Lake Vostok, Antarctica: Exploring a Subglacial Lake and Searching for Life in an Extreme Environment", Lectures in Astrobiology: Volume I, Advances in Astrobiology and Biogeophysics, Springer Berlin Heidelberg, pp. 227–288, Bibcode:2005leas.book..227P, doi:10.1007/10913406_8, ISBN 978-3-540-26229-9
  9. ^ Rampelotto, Pabulo Henrique (2010). "Resistance of Microorganisms to Extreme Environmental Conditions and Its Contribution to Astrobiology". Sustainability. 2 (6): 1602–1623. Bibcode:2010Sust....2.1602R. doi:10.3390/su2061602.
  10. ^ 10.0 10.1 Priscu, John C.; Tulaczyk, Slawek; Studinger, Michael; Ii, Mahlon C. Kennicutt; Christner, Brent C.; Foreman, Christine M. (2008-09-11). Antarctic subglacial water: origin, evolution, and ecology. Oxford University Press. doi:10.1093/acprof:oso/9780199213887.001.0001. ISBN 978-0-19-170750-6.