戀臭假單胞菌

戀臭假單胞菌Pseudomonas putida)是一種營腐生的土壤桿菌,屬於革蘭氏陰性菌,根據16SrRNA基因分析結果歸為假單胞菌屬(狹義),同其他幾個物種一起併入該屬下的戀臭假單胞菌組。[1]

戀臭假單胞菌
科學分類 編輯
域: 細菌域 Bacteria
門: 假單胞菌門 Pseudomonadota
綱: γ-變形菌綱 Gammaproteobacteria
目: 假單胞菌目 Pseudomonadales
科: 假單胞菌科 Pseudomonadaceae
屬: 假單胞菌屬 Pseudomonas
種:
戀臭假單胞菌 P. putida
二名法
Pseudomonas putida
Trevisan, 1889
模式菌株
ATCC 12633

CCUG 12690
CFBP 2066
DSM 291
HAMBI 7
JCM 13063 and 20120
LMG 2257
NBRC 14164
NCAIM B.01634
NCCB 72006 and 68020
NCTC 10936

異名

Bacillus fluorescens putidus" Flügge 1886
Bacillus putidus Trevisan 1889
Pseudomonas eisenbergii Migula 1900
Pseudomonas convexa Chester 1901
Pseudomonas incognita Chester 1901
Pseudomonas ovalis Chester 1901
Pseudomonas rugosa (Wright 1895) Chester 1901
Pseudomonas striata Chester 1901
Pseudomonas mildenbergii Bergey, et al.
Arthrobacter siderocapsulatus Dubinina and Zhdanov 1975
Pseudomonas arvilla O. Hayaishi
Pseudomonas barkeri Rhodes
Pseudomonas cyanogena Hammer

通過對假單胞菌屬的所有完整基因組進行系統基因組學測序,人們發現戀臭假單胞菌並不是一個單系演化支,而是包括了多個物種在內的、範圍更廣的進化群體,即戀臭假單胞菌組。[2]

戀臭假單胞菌(的一個變種)是世界上首個獲得專利的生物體,向生物頒發專利的行為引起了一些爭議。最終美國最高法院判決這一變種的發明人查克拉巴蒂英語Ananda Mohan Chakrabarty勝訴,這一史無前例的判決成為美國的判例《戴蒙德訴查克拉巴蒂案》。

戀臭假單胞菌擁有豐富的代謝途徑,可以分解甲苯等有機分子[3],應用於生物修復和污染治理中。雖然同屬的許多物種也有類似的能力,但戀臭假單胞菌最大的優點是安全無害,而不像綠膿桿菌P. aeruginosa)是潛在的人類病原體。

應用

生物修復

戀臭假單胞菌在生物修復領域有著極為廣泛的應用,例如,它可用作土壤接種物英語bioremediation修復受到污染的土地。[4] 它還能將難以被生物分解的苯乙烯轉化為可被生物分解的聚羥基烷酸酯(PHA),利於泡沫塑料的回收。[5][6]

生物防治

戀臭假單胞菌具有生物防治的潛力,可以抑制瓜果腐霉[7]尖孢鐮刀菌[8]等植物病原體的生長。

Oligonucleotide Usage Signatures of the Pseudomonas putida KT2440 Genome

已隱藏部分未翻譯內容,歡迎參與翻譯

Di- to pentanucleotide usage and the list of the most abundant octa- to tetradecanucleotides are useful measures of the bacterial genomic signature. The Pseudomonas putida KT2440 chromosome is characterized by strand symmetry and intra-strand parity of complementary oligonucleotides. Each tetranucleotide occurs with similar frequency on the two strands. Tetranucleotide usage is biased by G+C content and physicochemical constraints such as base stacking energy, dinucleotide propeller twist angle or trinucleotide bendability. The 105 regions with atypical oligonucleotide composition can be differentiated by their patterns of oligonucleotide usage into categories of horizontally acquired gene islands, multidomain genes or ancient regions such as genes for ribosomal proteins and RNAs. A species-specific extragenic palindromic sequence is the most common repeat in the genome that can be exploited for the typing of P. putida strains. In the coding sequence of P. putida LLL is the most abundant tripeptide.[9]

有機合成

戀臭假單胞菌對基因編輯表現出良好的服從性,因此可用於醫藥、農業領域多種化合物的工業生產。

CBB5和咖啡因

Pseudomonas putida CBB5」這一野生品系可以在純咖啡因中存活,並將咖啡因分解為二氧化碳[10][11]

參考文獻

  1. ^ Anzai, Y; Kim, H; Park, J Y; Wakabayashi, H; Oyaizu, HYR 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence.. International Journal of Systematic and Evolutionary Microbiology. [2023-02-19]. ISSN 1466-5034. doi:10.1099/00207713-50-4-1563. (原始內容存檔於2023-02-19). 
  2. ^ Nikolaidis, Marios; Mossialos, Dimitris; Oliver, Stephen G.; Amoutzias, Grigorios D. Comparative Analysis of the Core Proteomes among the Pseudomonas Major Evolutionary Groups Reveals Species-Specific Adaptations for Pseudomonas aeruginosa and Pseudomonas chlororaphis. Diversity. 2020-08, 12 (8) [2023-02-19]. ISSN 1424-2818. doi:10.3390/d12080289. (原始內容存檔於2022-12-15) (英語). 
  3. ^ Marqués, Silvia; Ramos, Juan L. Transcriptional control of the Pseudomonas putida TOL plasmid catabolic pathways. Molecular Microbiology. 1993, 9 (5): 923–9. PMID 7934920. doi:10.1111/j.1365-2958.1993.tb01222.x. 
  4. ^ Gomes, NC; Kosheleva, IA; Abraham, WR; Smalla, K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS microbiology ecology. 2005, 54 (1): 21–33. PMID 16329969. doi:10.1016/j.femsec.2005.02.005. 
  5. ^ Immortal Polystyrene Foam Meets its Enemy | LiveScience. [2014-05-20]. (原始內容存檔於2008-11-23). 
  6. ^ Ward, PG; Goff, M; Donner, M; Kaminsky, W; O'Connor, KE. A two step chemo-biotechnological conversion of polystyrene to a biodegradable thermoplastic. Environmental science & technology. 2006, 40 (7): 2433–7. PMID 16649270. doi:10.1021/es0517668. 
  7. ^ Amer, GA; Utkhede, RS. Development of formulations of biological agents for management of root rot of lettuce and cucumber. Canadian journal of microbiology. 2000, 46 (9): 809–16. PMID 11006841. doi:10.1139/w00-063. 
  8. ^ Validov, S; Kamilova, F; Qi, S; Stephan, D; Wang, JJ; Makarova, N; Lugtenberg, B. Selection of bacteria able to control Fusarium oxysporum f. Sp. Radicis-lycopersici in stonewool substrate. Journal of applied microbiology. 2007, 102 (2): 461–71. PMID 17241352. doi:10.1111/j.1365-2672.2006.03083.x. 
  9. ^ Cornelis P (editor). Pseudomonas: Genomics and Molecular Biology 1st. Caister Academic Press. 2008 [2014-05-20]. ISBN 1-904455-19-0. (原始內容存檔於2016-09-12). 
  10. ^ 存档副本. [2014-05-20]. (原始內容存檔於2015-04-17). 
  11. ^ Summers, RM; Louie, TM; Yu, CL; Subramanian, M. Characterization of a broad-specificity non-haem iron N-demethylase from Pseudomonas putida CBB5 capable of utilizing several purine alkaloids as sole carbon and nitrogen source. Microbiology (Reading, England). 2011, 157 (Pt 2): 583–92. PMID 20966097. doi:10.1099/mic.0.043612-0. 

外部連結