正式定义
设 是一个集合 到集合 的映射。如果 是 的子集,那么称满足 的映射[1] 是映射 在 上的限制。不正式地说, 是和 相同的映射,但只定义在 上。
如果将映射 看作一种在笛卡尔积 上的关系 ,然后 在 上的限制可以用它的图像来表示:
-
其中 表示图像 中的有序对。
扩张
映射 称为另一映射的 的扩张,当且仅当 。也就是说同时满足下面两个条件:
- 属于 之定义域的 必然也在 的定义域中,即 ;
- 和 在它们共同的定义域上的行为相同,即 。
数学上经常需要将一个具有指定性质的映射的定义域扩大,并要求扩张后的结果仍具有该性质。如寻找一个线性映射 的扩张映射 ,且 仍是线性的,这时说 是 的一个线性扩张,或者说;寻找一个连续映射 的扩张映射 ,且 仍连续,则称为进行了连续扩张;诸如此类。
例子
- 非单射函数 在域 上的限制是 ,而这是一个单射。
- 将Γ函数限制在正整数集上,并将变量平移 ,就得到阶乘函数: 。
限制的性质
- 映射 在其整个定义域 上的限制即是原函数,即 。
- 对一个映射在限制两次与限制一次效果相同,只要最终的定义域一样。也就是说,若 ,则 。
- 集合 上的恒等映射在集合 上的限制即是 到 的包含映射。[2]
- 连续函数的限制是连续的。[3] [4]
應用
反函數
若某函數存在反函數,其映射必為單射。若映射 非單射,可以限制其定義域以定義其一部分的反函數。如:
因為 ,故非單射。但若將定義域限制到 時該映射為單射,此時有反函數
(若限制定義域至 ,輸出 的負平方根的函數為反函數。)另外,若允許反函數為多値函數,則無需限制原函數的定義域。
粘接引理
點集拓撲學中的粘接引理聯繫了函數的連續性與限制函數的連續性。
- 設拓撲空間 的子集 同時為開或閉,且滿足 ,設 為拓撲空間。若映射 到 及 的限制都連續,則 也是連續的。
基於此結論,粘接在拓撲空間中的開或閉集合上定義的兩個連續函數,可以得到一個新的連續函數。
層
層將函數的限制推廣到其他物件的限制。
層論中,拓撲空間 的每個開集 ,有另一個範疇中的物件 與之對應,其中要求 滿足某些性質。最重要的性質是,若一個開集包含另一個開集,則對應的兩個物件之間有限制態射,即若 ,則有態射 ,且該些態射應仿照函數的限制,滿足下列條件:
- 對 的每個開集 ,限制態射 為 上的恆等態射。
- 若有三個開集 ,則複合 。
- (局部性)若 為某個開集 的開覆蓋,且 滿足:對所有 , ,則 。
- (黏合) 若 為某個開集 的開覆蓋,且對每個 ,給定截面 ,使得對任意兩個 ,都有 在定義域重疊部分重合(即 ),則存在截面 使得對所有 , 。
所謂拓撲空間 上的層,就是該些物件 和態射 組成的整體 。若僅滿足前兩項條件,則稱為預層。
参考资料
- ^
Stoll, Robert. Sets, Logic and Axiomatic Theories 2nd. San Francisco: W. H. Freeman and Company. 1974: [36]. ISBN 0-7167-0457-9.
- ^ Halmos, Paul. Naive Set Theory. Princeton, NJ: D. Van Nostrand. 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. ISBN 978-1-61427-131-4 (Paperback edition).
- ^ Munkres, James R. Topology 2nd. Upper Saddle River: Prentice Hall. 2000. ISBN 0-13-181629-2.
- ^ Adams, Colin Conrad; Franzosa, Robert David. Introduction to Topology: Pure and Applied. Pearson Prentice Hall. 2008. ISBN 978-0-13-184869-6.