正式定義
設 是一個集合 到集合 的映射。如果 是 的子集,那麼稱滿足 的映射[1] 是映射 在 上的限制。不正式地說, 是和 相同的映射,但只定義在 上。
如果將映射 看作一種在笛卡爾積 上的關係 ,然後 在 上的限制可以用它的圖像來表示:
-
其中 表示圖像 中的有序對。
擴張
映射 稱為另一映射的 的擴張,當且僅當 。也就是說同時滿足下面兩個條件:
- 屬於 之定義域的 必然也在 的定義域中,即 ;
- 和 在它們共同的定義域上的行為相同,即 。
數學上經常需要將一個具有指定性質的映射的定義域擴大,並要求擴張後的結果仍具有該性質。如尋找一個線性映射 的擴張映射 ,且 仍是線性的,這時說 是 的一個線性擴張,或者說;尋找一個連續映射 的擴張映射 ,且 仍連續,則稱為進行了連續擴張;諸如此類。
例子
- 非單射函數 在域 上的限制是 ,而這是一個單射。
- 將Γ函數限制在正整數集上,並將變量平移 ,就得到階乘函數: 。
限制的性質
- 映射 在其整個定義域 上的限制即是原函數,即 。
- 對一個映射在限制兩次與限制一次效果相同,只要最終的定義域一樣。也就是說,若 ,則 。
- 集合 上的恆等映射在集合 上的限制即是 到 的包含映射。[2]
- 連續函數的限制是連續的。[3] [4]
應用
反函數
若某函數存在反函數,其映射必為單射。若映射 非單射,可以限制其定義域以定義其一部分的反函數。如:
因為 ,故非單射。但若將定義域限制到 時該映射為單射,此時有反函數
(若限制定義域至 ,輸出 的負平方根的函數為反函數。)另外,若允許反函數為多値函數,則無需限制原函數的定義域。
粘接引理
點集拓撲學中的粘接引理聯繫了函數的連續性與限制函數的連續性。
- 設拓撲空間 的子集 同時為開或閉,且滿足 ,設 為拓撲空間。若映射 到 及 的限制都連續,則 也是連續的。
基於此結論,粘接在拓撲空間中的開或閉集合上定義的兩個連續函數,可以得到一個新的連續函數。
層
層將函數的限制推廣到其他物件的限制。
層論中,拓撲空間 的每個開集 ,有另一個範疇中的物件 與之對應,其中要求 滿足某些性質。最重要的性質是,若一個開集包含另一個開集,則對應的兩個物件之間有限制態射,即若 ,則有態射 ,且該些態射應仿照函數的限制,滿足下列條件:
- 對 的每個開集 ,限制態射 為 上的恆等態射。
- 若有三個開集 ,則複合 。
- (局部性)若 為某個開集 的開覆蓋,且 滿足:對所有 , ,則 。
- (黏合) 若 為某個開集 的開覆蓋,且對每個 ,給定截面 ,使得對任意兩個 ,都有 在定義域重疊部分重合(即 ),則存在截面 使得對所有 , 。
所謂拓撲空間 上的層,就是該些物件 和態射 組成的整體 。若僅滿足前兩項條件,則稱為預層。
參考資料
- ^
Stoll, Robert. Sets, Logic and Axiomatic Theories 2nd. San Francisco: W. H. Freeman and Company. 1974: [36]. ISBN 0-7167-0457-9.
- ^ Halmos, Paul. Naive Set Theory. Princeton, NJ: D. Van Nostrand. 1960. Reprinted by Springer-Verlag, New York, 1974. ISBN 0-387-90092-6 (Springer-Verlag edition). Reprinted by Martino Fine Books, 2011. ISBN 978-1-61427-131-4 (Paperback edition).
- ^ Munkres, James R. Topology 2nd. Upper Saddle River: Prentice Hall. 2000. ISBN 0-13-181629-2.
- ^ Adams, Colin Conrad; Franzosa, Robert David. Introduction to Topology: Pure and Applied. Pearson Prentice Hall. 2008. ISBN 978-0-13-184869-6.