特殊酉群

(重定向自SU(n)

数学中,特殊酉群(英語:special unitary group),记作 ,是行列式为 1 的 酉矩阵组成的群(一般酉矩阵的行列式是绝对值为1的复数)。群运算是矩阵乘法。特殊酉群是由 酉矩阵组成的酉群 的一个子群,酉群又是一般线性群 ) 的一个子群。

群论


粒子物理标准模型中有广泛的应用,特别是 电弱相互作用量子色动力学中。

最简单的情形 ,是平凡群,只有一个元素。群 同构于範數四元数,从而微分同胚三维球面。因为单位四元数可表示三维空间中的旋转(差一个符号),我们有一个同态 到旋转群 ,其

性质

特殊酉群 SU(n) 是一个 n2-1 维实矩阵李群。在拓扑上是单连通的。在代数上,它是一个单李群(意为它的李代数是单的,见下)。SU(n) 的中心同构于循环群 Zn。当 n ≥ 3,它的外自同构群Z2,而 SU(2) 的外自同构群是平凡群

SU(n) 代数由 n2 个算子生成,满足交换关系(对 i, j, k, l = 1, 2, ..., n):

 

另外,算子

 

满足

 

这意味着 SU(n) 独立的生成元个数是 n2-1[1]

生成元

一般地,SU(n) 的无穷小生成元(infinitesimal generator) T,由一个无埃尔米特矩阵表示。即

  •  

以及

  •  

基本表示

在定义或基本表示中,由   矩阵表示的生成元是:

  •  
这里系数   是结构常数,它对所有指标都是反对称的,而系数   对所有指标都是对称的。

从而

  •  
  •  

我们也有

  •  

作为一个正规化约定。

伴随表示

伴随表示中,生成元表示由   矩阵表示,其元素由结构常数定义:

  •  

SU(2)

  一个一般矩阵元素形如

 

这里   使得  。我们考虑如下映射  ,(这里   表示 2×2 复矩阵集合),定义为

 

考虑到   微分同胚   同胚于  ,我们可看到   是一个实线性单射,从而是一个嵌入。现在考虑   限制在三维球面上,记作  ,我们可发现这是三维球面到   的一个紧子流形的一个嵌入。但显然有  ,作为一个流形微分同胚于  ,使   成为一个紧连通李群

现在考虑李代数  ,一个一般元素形如

 

这里   以及  。易验证这样形式的矩阵的是零并为反埃尔米特的。从而李代数由如下矩阵生成

 

易见它具有上面提到的一般元素的形式。它们满足关系   。从而交换子括号由

 

确定。上述生成元与泡利矩阵有关, ,   

SU(3)

SU(3) 的生成元 T,在定义表示中为

 

这里  盖尔曼矩阵,是 SU(2) 泡利矩阵在 SU(3) 之类比:

     
     
   

注意它们都是无埃尔米特矩阵

它们服从关系

  •  
这里 f 是结构常数,如上所定义,它们的值为
 
 
 

d 的取值:

 
 
 

李代数

  对应的李代数记作  。它的标准数学表示由无迹反埃尔米特   复矩阵组成,以通常交换子李括号粒子物理学家通常增加一个因子  ,从而所有矩阵成为埃尔米特的。这只不过是同一个实李代数一个不同的更方便的表示。注意    上一个李代数。

例如,下列量子力学中使用的矩阵组成    上的一组

 
 
 

(这里  虚数单位。)

这个表示经常用于量子力学(参见泡利矩阵以及盖尔曼矩阵)表示基本粒子比如电子的自旋。它们也作为我们三维空间量子相对论描述中的单位向量

注意任意两个不同生成元的乘积是另一个生成元,以及生成元反交换。与单位矩阵(乘以  )一起

 

它们也是   的生成元。

当然这里它取决于我们最终处理的问题,比如在非相对论量子力学中为 2-旋量;或在相对论狄拉克理论中,我们需要到 4-旋量的一个扩张;或在数学中甚至是克利福德代数

注:在矩阵乘法下(在此情形是反交换的),生成克利福德代数  ,而在交换子括号下生成李代数  

回到一般的  

如果我们选择(任意)一个特定的基,则纯虚数无迹对角   矩阵子空间组成一个  嘉当子代数

将这个李代数复化,从而现在允许任何无迹   矩阵。本征向量是嘉当子代数自己,只有一个非零元素的矩阵不是对角的。尽管嘉当子代数   只是   维,但为了化简计算,经常引入一个辅助元素,与所有元素交换的单位矩阵(它不能视为这个李代数的一个元素)。故我们有一个基,其中第   个基向量是在第   个对角元素为   而在其它处为零的矩阵。则权由   个坐标给出,而且在所有   个坐标求和为零(因为单位矩阵只是辅助的)。

  ,它的邓肯图  给出,有  顶点的链。

它的根系  个根组成,生成一个   欧几里得空间。这里,我们使用   冗余坐标而不是   坐标来强调根系的对称(  坐标之和为零)。换句话说,我们是将这个   维向量空间嵌入  -维中。则根由所有   置换  。两段以前的构造解释了为什么。单根的一个选取为

 ,
 ,
…,
 .

它的嘉当矩阵

 .

它的外尔群考克斯特群对称群   -单形的对称群。

广义特殊酉群

对一个 FF 上广义特殊酉群 SU(p,q;F),F 上一个秩为 n=p+q向量空间上使得一个符号为 (p,q) 的非退化埃尔米特形式不变的所有行列式为 1 线性变换组成的群。这个么正群经常称为 F 上符号为 (p,q) 的特殊酉群。域 F 可以换为一个交换环,在这种情形向量空间换为自由模

特别地,固定 GL(n,R) 中一个符号为 (p,q) 的埃尔米特矩阵,则所有

 

满足

 
 

经常可以见到记号   略去环或域,在这种形式环或域是指 C,这给出一个典型李群。当 F=C 时,A 的标准选取是

 

对某些维数 A 可能有更好的选择,当限制为 C 的一个子环时有更好表现。

例子

这类群的一个重要例子是皮卡模群 SU(2,1;Z[i]),(射影地)作用在二度复双曲空间上,同样地 SL(2,Z) (射影地)作用在二维实双曲空间上。2003年,Gábor Francsics彼得·拉克斯算出了这个群在   上作用的基本域,参见 [1]

另一个例子是 SU(1,1;C),同构于 SL(2,R)。

重要子群

在物理学中,特殊酉群用于表示波色对称。在对称性破缺理论中寻找特殊酉群的子群很重要。在大一统理论中 SU(n) 重要的子群是,对 p>1,n-p>1:

 

为了完整性,还有正交子群:

 
 

因为 SU(n) 的n-1,U(1) 是 1,一个有用的检验是看子群的秩是小于还是等于原来群的秩。SU(n) 是多个其它李群的子群:

 
 
 (参见自旋群
 
 
 (关于 E6, E7 与 G2 参见单李群)。

有同构 SU(4)=Spin(6)SU(2)=Spin(3)=USp(2) 以及 U(1)=Spin(2)=SO(2)

最后值得指出的是 SU(2) 是 SO(3) 的二重覆叠群,这个关系在非相对论量子力学 2-旋量的旋转中起着重要的作用。

相关条目

注释

  1. ^ R.R. Puri, Mathematical Methods of Quantum Optics, Springer, 2001.

参考文献

外部链接