定理

基於既定陳述之上所證明出的陳述

定理(英語:Theorem)是經過受邏輯限制的證明為真的陳述。一般來說,在數學中,只有重要或有趣的陳述才叫定理。證明定理是數學的中心活動。一個定理陳述一個給定類的所有(全稱)元素一種不變的關係,這些元素可以是無窮多,它們在任何時刻都無區別地成立,而沒有一個例外。(例如:某些,某些,就不能算是定理)。

猜想是相信為真但未被證明的數學敘述,或者叫做命題,當它經過證明後便是定理。猜想是定理的來源,但並非唯一來源。一個從其他定理引伸出來的數學敘述可以不經過成為猜想的過程,成為定理。

如上所述,定理需要某些邏輯框架,繼而形成一套公理公理系統)。同時,一個推理的過程,容許從公理中引出新定理和其他之前發現的定理。

命題邏輯,所有已證明的敘述都稱為定理。

各種數學敘述(按重要性來排列)

  1. 數學原理
  2. 公理(也稱公設)-公理是沒有經過證明,但被當作不證自明的一個命題
  3. 定理
  4. 命題-通常,命題是一個可以判斷陳述句,亦有既的命題(悖論)。
  5. 推論(也稱系、系理)-一個從定理隨之而即時出現的敘述。若命題B可以很快、簡單地推導出命題A,命題A為命題B的推論。
  6. 引理(也稱輔助定理補理)-某個定理的證明的一部分的敘述。它並非主要的結果。引理的證明有時還比定理長,例如舒爾引理
  7. 假說-根據已知的科學事實和科學原理,對所研究的自然現象及其規律性提出的推測和說明。

結構

定理一般都有許多條件。然後有結論——一個在條件下成立的數學敘述。通常寫作「若條件,則結論」。用符號邏輯來寫就是條件→結論。而當中的證明不視為定理的成分。

逆定理

若存在某敘述為 ,其逆敘述就是 。逆敘述成立的情況是 ,否則通常都是倒果為因,不合常理。若果敘述是定理,其成立的逆敘述就是逆定理

  • 若某敘述和其逆敘述都為真,條件必要且充足。
  • 若某敘述為真,其逆敘述為假,條件充足。
  • 若某敘述為假,其逆敘述為真,條件必要。

邏輯中的定理

邏輯語言中的定理表示的是一個公式集合,並且該公式集合中的每一個公式都代表着知識的一個片段,由此我們可以給定理一個更準確的表達(這裡所說的定理指的是在一階邏輯中的定理,通常來說任意一個命題集合往往不一定是定理)。定理在邏輯中的定義︰

一個定理是一個含有由建立於語言集合 上的命題( -命題)組成的非空集合

這個定理(或這個命題集合)我們記作 ,這些建立於語言集合 上的命題必須符合如下屬性:

對所有在 中的命題 ,如果 ,那麼 

比如一個永真命題集合是一個定理,這個永真命題集合被包含在所有建立在語言集合 上的定理中。此外,我們說一個定理是另外一個定理 擴展(extension),前提是該定理包含定理 


有一個命題集合 ,我們將一個包含 的集合記作 ,那麽  。顯而易見 ,所以 是一個定理。比如我們有一個集合  有三個基於語言 上的命題,其中  是常數符號, 是函數符號。三個命題如下:

 
 
 

那麼如果有 ,則  的定理。當然,如果  是兩個命題集合且滿足 ,那麼 


我們說一個定理 完整的(Complete),當且僅當對於和 一樣構建在同樣語言集合上的所有命題 ,要麼 ,要麼 

注意:這個概念不能和定理 完備性(Completude)混淆,完備性是證明在定理 中的永真命題是遞推可枚舉的(recursivement enumerable),但是不能說它一定是完整的。

不是所有的定理是完整的。比如 一個空集合 的定理是所有真命題集合,但是 不是完整的。假如有命題 ,對於 來說,它既不是永真命題,也不是永假命題,它是一個可滿足式的命題,也就是說  。因此 ,所以我們說 不是完整的。 一個定理 稱作是穩健的(Consistante),當且僅當 。我們說對所有的解釋(Interpretation)  是一個定理,並且 既是穩健的又是完整的。

參考文獻

參見